Colloidal quantum dots (CQD) are used in the fabrication of efficient, low-cost solar cells synthesized in and deposited from solution. Breakthroughs in CQD materials have led to a record efficiency of 7.0%. Looking forward, any path toward increasing efficiency must address the trade-off between short charge extraction lengths and long absorption lengths in the near-infrared spectral region. Here we exploit the localized surface plasmon resonance of metal nanoparticles to enhance absorption in CQD films. Finite-difference time-domain analysis directs our choice of plasmonic nanoparticles with minimal parasitic absorption and broadband response in the infrared. We find that gold nanoshells (NS) enhance absorption by up to 100% at λ = 820 nm by coupling of the plasmonic near-field to the surrounding CQD film. We engineer this enhancement for PbS CQD solar cells and observe a 13% improvement in short-circuit current and 11% enhancement in power conversion efficiency.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/35660 |
Date | 16 July 2013 |
Creators | Paz-Soldan, Daniel Alexander |
Contributors | Sargent, Edward H. |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds