Return to search

Screened electrostatic interaction of charged colloidal particles in nonpolar liquids

Liquid dispersions of colloidal particles play a big role in nature and as industrial products or intermediates. Their material properties are largely determined by the liquid-mediated particle-particle interaction.

In water-based systems, electric charge is ubiquitous and electrostatic particle interaction often is the primary factor in stabilizing dispersions against decomposition by aggregation and sedimentation. Very nonpolar liquids, by contrast, are usually considered free of charge, because their low dielectric constant raises the electrostatic cost of separating opposite charges above the available thermal energy. Defying this conventional wisdom, nonpolar solutions of certain ionic surfactants do support mobile ions and surface charges. Even some nonionic surfactants have recently been found to raise the conductivity of nonpolar oils and promote surface charging of suspended particles, but this counter-intuitive behavior is not yet widely acknowledged, nor is the mechanism of charging understood.

The present study provides the first characterization of the electrostatic particle interaction caused by nonionizable surfactants in nonpolar oils. The methods used in this study are video microscopy experiments where particle positions of equilibrium ensembles are obtained and translated into particle interactions.

Experimentally, equilibrium particle positions are monitored by digital video microscopy, and subjected to liquid structure analysis in order to find the energy of interaction between two particles. The observed interaction energy profiles agree well with a screened-Coulomb potential, thus confirming the presence of both surface charge and mobile ions in solution. In contrast to recently reported electrostatic particle interactions induced by ionic surfactants in nonpolar solution, the present study finds evidence of charge screening both above and below the surfactant's critical micelle concentration, CMC. Fitted Debye screening lengths are much larger than in aqueous systems, but similar to the Debye length in nonpolar oils reported for micellar solutions of ionic surfactants cite{hsu_charge_2005}.

Radial distribution functions obtained from experiments are compared to Monte-Carlo simulations with input potentials obtained from a fit to the interaction measurement. The measured electrostatic forces and fitted surface potentials are fairly substantial and easily capable of stabilizing colloidal dispersions. Although few in number, surface charges formed on polymer particle surfaces submerged in nonpolar solutions of nonionizable surfactants create surface potentials comparable to those in aqueous systems.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/34820
Date18 May 2010
CreatorsEspinosa, Carlos Esteban
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeThesis

Page generated in 0.0022 seconds