Return to search

On the Number of Colors in Quandle Knot Colorings

A major question in Knot Theory concerns the process of trying to determine when two knots are different. A knot invariant is a quantity (number, polynomial, group, etc.) that does not change by continuous deformation of the knot. One of the simplest invariant of knots is colorability. In this thesis, we study Fox colorings of knots and knots that are colored by linear Alexander quandles. In recent years, there has been an interest in reducing Fox colorings to a minimum number of colors. We prove that any Fox coloring of a 13-colorable knot has a diagram that uses exactly five colors. The ideas behind the reduction of colors in a Fox coloring is extended to knots colored by linear Alexander quandles. Thus, we prove that any knot colored by either the linear Alexander quandle Z5[t]/(t − 2) or Z5[t]/(t − 3) has a diagram using only four colors.

Identiferoai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-7299
Date22 March 2016
CreatorsKerr, Jeremy William
PublisherScholar Commons
Source SetsUniversity of South Flordia
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Theses and Dissertations
Rightsdefault

Page generated in 0.0023 seconds