Return to search

GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE: A NEW MOLECULAR TARGET IN CHEMOTHERAPY

Cancer therapy traditionally seeks to achieve complete tumor eradication via induction of cancer cell death by chemotherapeutic agents or radiation. An alternative strategy is to induce cytostasis, i.e. to arrest proliferation of cancer cells, perhaps in parallel with conventional chemotherapy. Such an alternative strategy could provide prolonged survival with less severe consequences of cytotoxic agents. To be truly effective, a chemotherapeutic drug should exert its action on biochemical targets specific for neoplastic cells while leaving the normal cells unaffected. Therefore, the knowledge of tumor cell-specific biochemical and signaling pathways is a pre-requisite for development of new, prospective anticancer drugs. In this study, we concentrated on the energy metabolism which is remarkably different in tumor and healthy cells. Cancer cells generate ATP mainly through the glycolytic pathway, and depend far less on oxidative phosphorylation (the Warburg effect). The way cancer cells generate energy reflects their need for energy as well as building blocks required for fast biosynthesis. Glycolysis, in contrast to oxidative phosphorylation, enhances biosynthetic pathways thus accelerating progression of tumor cells through the cell cycle. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) occupies a central position in the glycolytic pathway thus playing a critical role in the energy metabolism of cancer cells. Along with its enzymatic activity, GAPDH is a multifunctional protein which acts as a signaling and regulatory molecule in several cellular mechanisms. Based on the fact that glycolysis plays a pivotal role in survival of cancer cells, we hypothesized that down-regulation of GAPDH protein would alter the cancer cell proliferation, and cellular sensitivity of cancer cells to chemotherapy. The goal of this study was to evaluate GAPDH as a potential molecular target for treatment of cancer. In this project, our aims were: 1) To determine the effect of GAPDH level on cell proliferation and cell cycle progression of human carcinoma cells; 2) To elucidate the molecular mechanism(s) causing proliferation arrest in GAPDH-depleted cells; 3) To identify the chemotherapeutic agents exhibiting cytotoxic effect against non-dividing, senescent cells; 4) To analyze molecular dynamics of nuclear GAPDH and its mutant variants in the context of chemotherapy-induced stress. Towards these aims, we developed an experimental model where the level of GAPDH in human carcinoma cells was modulated by RNA interference (RNAi) technology. In vitro experiments were performed in this model system to evaluate the energy status, and signaling pathways in cancer cells after GAPDH depletion. Human carcinoma isogenic cell lines with different levels of GAPDH protein were analyzed for the sensitivity to various chemotherapeutic agents. Using site-mutagenesis, we prepared mutated variants of GAPDH and estimated their enzymatic activity. We also prepared constructs where GAPDH cDNA was fused with green fluorescent protein (EGFP) cDNA, and transiently expressed them in human cancer cells, to assess GAPDH localization and biological effects. We analyzed intranuclear localization and dynamic characteristics of GAPDH and its variants in the live cells using image confocal technologies (e.g. FRAP). In our study, we demonstrated that GAPDH is a molecular target with clinical potential for senescence-based tumor suppression. Our experiments revealed that depletion of GAPDH induces energy crisis and proliferation arrest in human carcinoma cells. We elucidated the molecular mechanisms initiated by GAPDH depletion, and demonstrated that GAPDH-depleted cells acquire the accelerated senescence phenotype. Moreover, we found chemotherapeutic agents cytotoxic to the senescent cells, a finding that opens a way to combination chemotherapy with therapy-induced senescence agents. Our results on dynamic characteristics of intranuclear GAPDH and its mutant forms indicate that in the nucleus, GAPDH interacts with biomolecules yet to be identified. The results of this study suggest a novel, prospective molecular target for pharmacotherapeutic intervention in cancer management. / Pharmaceutical Sciences

Identiferoai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/2150
Date January 2012
CreatorsPhadke, Manali
ContributorsKrynetskiy, Evgeny, Borenstein, Michael R., Ilies, Marc A., Canney, Daniel J., Sirover, Michael A.
PublisherTemple University. Libraries
Source SetsTemple University
LanguageEnglish
Detected LanguageEnglish
TypeThesis/Dissertation, Text
Format176 pages
RightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/
Relationhttp://dx.doi.org/10.34944/dspace/2132, Theses and Dissertations

Page generated in 0.0075 seconds