O objetivo deste trabalho é fazer um estudo amplo e sequencial sobre combinatória. Iniciase com os fundamentos da combinatória enumerativa, tais como permutações, combinações simples, combinações completas e os lemas de Kaplanski. Num segundo momento é apresentado uma abordagem aos problemas de contagem utilizando a teoria de conjuntos; são abordados o princípio da inclusão-exclusão, permutações caóticas e a contagem de funções. No terceiro momento é feito um aprofundamento do conceito de permutação sob a ótica da álgebra abstrata. É explorado o conceito de grupo de permutações e resultados importantes relacionados. Na sequência propõe-se uma relação de ordem completa e estrita para o grupo de permutações. Por fim, investiga-se dois problemas interessantes da combinatória: a determinação do número de caminhos numa malha quadriculada e a contagem de permutações que desconhecem padrões de comprimento três. / The objective of this work is to make a broad and sequential study on combinatorics. It begins with the foundations of enumerative combinatorics, such as permutations, simple combinations, complete combinations, and Kaplanskis lemmas. In a second moment an approach is presented to the counting problems using set theory; the principle of inclusion-exclusion, chaotic permutations and the counting of functions are addressed. In the third moment a deepening of the concept of permutation is made from the perspective of abstract algebra. The concept of group of permutations and related important results is explored. A strict total order relation for the permutation group is proposed. Finally, we investigate two interesting combinatorial problems: the determination of the number of paths in a grid and the number of permutations that avoids patterns of length three.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-31012018-161438 |
Date | 20 November 2017 |
Creators | Fernandes, Renato da Silva |
Contributors | Ribeiro, Hermano de Souza |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0021 seconds