Ce mémoire est dédié à l'étude de la stabilité des systèmes à retards via les méthodes temporelles de Lyapunov. Au-delà des formes usuelles de stabilité, nous étudions quatre autres propriétés : stabilité entrée-sortie, stabilité en temps fini, stabilité entrée-état et stabilité pratique. Après une large introduction, le second chapitre se focalise sur la stabilité entrée-sortie des systèmes linéaires à retards variables par une approche originale se basant sur des fonctionnelles de Lyapunov-Krasovskii. La forme descripteur est utilisée pour obtenir des conditions en termes d'inégalités matricielles. Dans le troisième chapitre, la stabilité en temps fini caractérise un équilibre asymptotiquement stable qui, de plus, est atteint en temps fini. Plusieurs résultats sont proposés concernant la stabilité et la stabilisation sur des systèmes non-linéaires et linéaires respectivement. Les premiers exemples de systèmes stables en temps fini sont donnés. Ensuite, la stabilité entrée-état est analysée dans le cadre des systèmes non linéaires soumis à des perturbations larges. Cette nouvelle notion est étendue au cas des systèmes retardés et plusieurs résultats sont proposés via des fonctionnelles de Krasovskii. Le dernier chapitre se consacre à l'étude de la stabilité pratique appliquée au problème de la réticence dans la commande par modes glissants. En présence de retards, cette technique de type “grands gains” peut provoquer une oscillation importante sur l'état du système — notamment lorsque la dynamique des actionneurs ne peut être négligée. Le phénomène de réticence est analysé formellement et de nombreuses simulations permettent de confirmer les avantages de la méthode proposée.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00136239 |
Date | 24 November 2006 |
Creators | Yeganefar, Nima |
Publisher | Ecole Centrale de Lille, Université des Sciences et Technologie de Lille - Lille I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds