La consommation d'énergie des centres de données est un enjeu majeur. Leurs communications internes représentent près du quart de cette consommation. Les technologies de commutation optique ont en principe une meilleure efficacité énergétique que les solutions actuelles. Ce travail porte sur les réseaux optiques en mode paquet pour des centres de données de petite et moyenne taille. Il s'est déroulé dans le cadre du projet EPOC (Energy Proportional and Opportunistic Computing) qui s'intéresse à la réduction de la consommation d'énergie d'un centre de données alimenté partiellement par des sources renouvelables. Une hypothèse clé est l'absence d'un réseau de stockage dédié réduisant ainsi la consommation des interconnexions. Par contre, afin de pouvoir éteindre certains serveurs selon la charge de travail et l'énergie disponible, le débit doit être de l'ordre de 100 Gbit/s. Après un état de l'art des réseaux optiques pour centre de données nous choisissons une solution reposant sur une infrastructure entièrement passive et des émetteurs rapidement accordables en longueur d'onde, proposée récemment dans la littérature (POPI).Nous étudions les limitations dues aux composants (pertes d'insertion, plage d'accord et espacement des canaux). Nous proposons une extension (E-POPI) qui permet d'augmenter le nombre de serveurs connectés en utilisant plusieurs plages de longueurs d'onde. Pour les centres de données de plus grande taille nous proposons un réseau à deux étages (intra- et inter-racks) opérant respectivement dans les bandes C et L, POPI+. La connexion entre étages se fait via une passerelle transparente dans un sens et opaque dans l'autre. Différentes solutions de contrôle des deux étages sont détaillées.Un des éléments essentiels de faisabilité de ces architectures est de concilier la montée en débit avec les pertes du réseau passif d'interconnexion. Les techniques cohérentes des transmissions longue distance ne sont pas actuellement envisageables pour un centre de données. Nous avons donc étudié les formats PAM 4 et 8, par simulation avec différents débits (jusqu'à 112 Gbit/s et récepteurs (PIN, APD et SOA-PIN) et aussi, expérimentalement, à 12 et 18 Gbit/s. Nous avons développé une méthode de compensation des distorsions générées par les différents composants qui procure un compromis entre précision de correction et temps de calcul.Ces résultats nous permettent de déterminer les pertes d'insertion tolérables. Nous les combinons avec les limitations liées à la plage d'accord des émetteurs et à l'encombrement spectral des canaux occupant des fenêtres multiples de 12,5 GHz pour dimensionner les différentes architectures. Les réseaux POPI, E-POPI et POPI+ permettent respectivement la connexion de 48, 99 et 2352 entités à 112 Gbit/s. Nos évaluations tiennent compte d'une possible dispersion des caractéristiques des principaux composants. / Data-center energy consumption is nowadays a major issue. Intra-data-center networking accounts almost for a quarter of the data-center total power consumption. Optical switching technologies could provide higher power efficiency than current solutions based on electrical-packet switching. This work focuses on optical-packet-switched networks for small- and medium-size data centers. It takes part of the EPOC (Energy-Proportional and Opportunistic Computing) project, which main interest consists on reducing the overall power consumption of a data center partially powered by renewable sources. A key assumption is that our data center does not rely on a dedicated storage network, in order to reduce the consumption of those interconnections. In addition, with the aim of being able to turn off some servers according to the workload and the available energy, the bit rate must be close to 100 Gbit/s. We have chosen, after studying the state of the art of data-center interconnects, a purely passive network architecture based on fast-wavelength-tunable transmitters under the name of POPI.We study POPI's limitations due to its components (insertion loss, tuning range and channel spacing). We then propose an extension called E-POPI that allows to increase the number of connected servers by using several transmission bands. For larger data centers, we propose POPI+, a two-stage infrastructure for intra- and inter-rack communications operating in the C and L bands, respectively. The connection between both stages is done via a transparent gateway in one direction and an opaque one in the other. We discuss different control solutions for both stages.The feasibility of these architectures depends on, among other factors, dealing with bit-rate increasing and power losses of a passive interconnect. Coherent long-distance-transmission techniques are not currently suited to data centers. We therefore studied PAM 4 and 8 modulation formats with direct detection. On one hand, by simulation, with different bit rates (up to 112 Gbit/s) and receivers (PIN, APD and SOA-PIN) and, on the other hand, experimentally, at 12 and 18 Gbit/s. We have developed a method for compensating the distortions generated by the different network components. Our method takes into account a good tradeoff between correction accuracy and computation time.Simulation results allow us to determine the amount of insertion loss that may be supported. We then combine these results with the limitations of transmitters-tuning range and channel spacing using multiple of 12.5 GHz slots for dimensioning the proposed architectures. POPI, E-POPI and POPI+ interconnects allow the connection of 48, 99 and 2352 entities, respectively, at 112 Gbit/s. Our assessments take into account a potential dispersion of the characteristics of the main architecture components.
Identifer | oai:union.ndltd.org:theses.fr/2017IMTA0057 |
Date | 22 December 2017 |
Creators | Dumas feris, Barbara Pilar |
Contributors | Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, Sharaiha, Ammar |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0031 seconds