Antibodies can enhance or suppress the immune responses against their specific antigens. This phenomenon is known as antibody-mediated feedback regulation. We have studied the mechanisms underlying IgE-, IgM-, and IgG3-mediated enhancement of immune responses in mouse models using intravenous immunization. We attempted to answer the following questions: 1) Which cell type presents IgE-complexed antigens to CD4+ T cells? 2) Is complement activation required for specific IgM to enhance antibody responses? 3) Does IgM enhance CD4+ T-cell responses? 4) How are IgG3-antigen complexes transported into B-cell follicles? We found that CD23+ B cells transporting IgE-antigen complexes into B-cell follicles were not required to prime the antigen-specific CD4+ T cells in vivo, whereas CD11c+ cells were indispensable. After examining the three most common subpopulations of CD11c+ cells in the spleen, we determined that it was CD8α- conventional dendritic cells migrating into the T-cell zone following immunization that presented IgE-complexed antigens to CD4+ T cells. Next, we showed that specific IgM from Cµ13 mice, which is unable to activate complement, failed to enhance either antibody or germinal center responses whereas wild-type IgM enhanced both responses. Therefore, specific IgM must activate complement to enhance humoral responses. In addition, wild-type IgM did not up-regulate CD4+ T-cell responses. Finally, we showed that IgG3-antigen complexes were transported by marginal zone B cells into B-cell follicles via binding to complement receptors 1 and 2 (CR1/2) on those cells. The immune complexes were captured by follicular dendritic cells as early as 2 h after immunization. Germinal center responses were also enhanced by IgG3. Using bone marrow chimeric mice, we found that CR1/2 expression was required on both marginal zone B cells and follicular dendritic cells to provide an optimal enhancement of antibody responses.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-237337 |
Date | January 2015 |
Creators | Ding, Zhoujie |
Publisher | Uppsala universitet, Institutionen för medicinsk biokemi och mikrobiologi, Uppsala |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 1061 |
Page generated in 0.0016 seconds