Return to search

Architecting Resilient Computing Systems : a Component-Based Approach / Conception et implémentation de systèmes résilients par une approche à composants

L'évolution des systèmes pendant leur vie opérationnelle est incontournable. Les systèmes sûrs de fonctionnement doivent évoluer pour s'adapter à des changements comme la confrontation à de nouveaux types de fautes ou la perte de ressources. L'ajout de cette dimension évolutive à la fiabilité conduit à la notion de résilience informatique. Parmi les différents aspects de la résilience, nous nous concentrons sur l'adaptativité. La sûreté de fonctionnement informatique est basée sur plusieurs moyens, dont la tolérance aux fautes à l'exécution, où l'on attache des mécanismes spécifiques (Fault Tolerance Mechanisms, FTMs) à l'application. A ce titre, l'adaptation des FTMs à l'exécution s'avère un défi pour développer des systèmes résilients. Dans la plupart des travaux de recherche existants, l'adaptation des FTMs à l'exécution est réalisée de manière préprogrammée ou se limite à faire varier quelques paramètres. Tous les FTMs envisageables doivent être connus dès le design du système et déployés et attachés à l'application dès le début. Pourtant, les changements ont des origines variées et, donc, vouloir équiper un système pour le pire scénario est impossible. Selon les observations pendant la vie opérationnelle, de nouveaux FTMs peuvent être développés hors-ligne, mais intégrés pendant l'exécution. On dénote cette capacité comme adaptation agile, par opposition à l'adaptation préprogrammée. Dans cette thèse, nous présentons une approche pour développer des systèmes sûrs de fonctionnement flexibles dont les FTMs peuvent s'adapter à l'exécution de manière agile par des modifications à grain fin pour minimiser l'impact sur l'architecture initiale. D'abord, nous proposons une classification d'un ensemble de FTMs existants basée sur des critères comme le modèle de faute, les caractéristiques de l'application et les ressources nécessaires. Ensuite, nous analysons ces FTMs et extrayons un schéma d'exécution générique identifiant leurs parties communes et leurs points de variabilité. Après, nous démontrons les bénéfices apportés par les outils et les concepts issus du domaine du génie logiciel, comme les intergiciels réflexifs à base de composants, pour développer une librairie de FTMs adaptatifs à grain fin. Nous évaluons l'agilité de l'approche et illustrons son utilité à travers deux exemples d'intégration : premièrement, dans un processus de développement dirigé par le design pour les systèmes ubiquitaires et, deuxièmement, dans un environnement pour le développement d'applications pour des réseaux de capteurs. / Evolution during service life is mandatory, particularly for long-lived systems. Dependable systems, which continuously deliver trustworthy services, must evolve to accommodate changes e.g., new fault tolerance requirements or variations in available resources. The addition of this evolutionary dimension to dependability leads to the notion of resilient computing. Among the various aspects of resilience, we focus on adaptivity. Dependability relies on fault tolerant computing at runtime, applications being augmented with fault tolerance mechanisms (FTMs). As such, on-line adaptation of FTMs is a key challenge towards resilience. In related work, on-line adaption of FTMs is most often performed in a preprogrammed manner or consists in tuning some parameters. Besides, FTMs are replaced monolithically. All the envisaged FTMs must be known at design time and deployed from the beginning. However, dynamics occurs along multiple dimensions and developing a system for the worst-case scenario is impossible. According to runtime observations, new FTMs can be developed off-line but integrated on-line. We denote this ability as agile adaption, as opposed to the preprogrammed one. In this thesis, we present an approach for developing flexible fault-tolerant systems in which FTMs can be adapted at runtime in an agile manner through fine-grained modifications for minimizing impact on the initial architecture. We first propose a classification of a set of existing FTMs based on criteria such as fault model, application characteristics and necessary resources. Next, we analyze these FTMs and extract a generic execution scheme which pinpoints the common parts and the variable features between them. Then, we demonstrate the use of state-of-the-art tools and concepts from the field of software engineering, such as component-based software engineering and reflective component-based middleware, for developing a library of fine-grained adaptive FTMs. We evaluate the agility of the approach and illustrate its usability throughout two examples of integration of the library: first, in a design-driven development process for applications in pervasive computing and, second, in a toolkit for developing applications for WSNs.

Identiferoai:union.ndltd.org:theses.fr/2013INPT0120
Date09 December 2013
CreatorsStoicescu, Miruna
ContributorsToulouse, INPT, Fabre, Jean-Charles, Roy, Matthieu
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0115 seconds