La technique de photocatalyse solaire offre une solution prometteuse pour une élimination efficace des polluants pharmaceutiques émergents comme les antibiotiques dans les eaux usées. Les matériaux photocatalytiques à base de semi-conducteurs jouent un rôle crucial dans la dégradation complète de ces nouveaux polluants pharmaceutiques. À ce propos, de nouveaux photocatalyseurs nanocomposites ont montré une performance catalytique importante par rapport aux photocatalyseurs classiques dans la dégradation des antibiotiques dans l'eau. Ces photocatalyseurs nanocomposites surmontent des défis notamment une photo-absorption insuffisante, une mauvaise séparation de charge, un transfert de charge lent, une recombinaison de charge importante, une mauvaise réaction de surface, une stabilité faible et une récupération difficile. Dans ce contexte, nous avons développé des hybride matériaux photocatalytiques nanostructuré et nanocomposite tout en exploitant leur performance pour la dégradation des antibiotiques sous la lumière solaire. Un nouveau matériau de pérovskite ferroélectrique à base de bismuthate de calcium (CaBiO₃) nanostructuré avec une disproportion de différentes multicharges Bi³⁺ et Bi⁵⁺, a été développé via des méthodes de complexation de glycine et d'échange d'ions. La disproportion efficace obtenue de charge Bi³⁺/Bi⁵⁺ et l'arrangement bien organisé du cristal octaédrique de BiO₆ ont offert une photo-absorbance efficace du visible ainsi qu'une photogénération et une séparation importante de porteurs de charge dans CaBiO₃. En outre, les matériaux CaBiO₃ développés présentent une nanostructure avec une surface spécifique plus élevée qui offre des propriétés de surface améliorées en faveur de la réaction catalytique. De plus, les matériaux à base de CaBiO₃ sont étudiés pour la dégradation des antibiotiques de ciprofloxacine et de tétracycline sous la lumière solaire. Un nanocomposite efficace de BiVO₄-APS-C₆₀ a été développé en intégrant les nanoparticules C₆₀ fonctionnalisées par aminosilicate à la surface de nanocouches ultrafines de BiVO₄. L'intégration de C₆₀ sur BiVO₄ a élargi l'absorption de la lumière dans le domaine du visible et a également offert une génération et une séparation efficaces des porteurs de charge photo-induits. En fait, l'aminosilicate a établi une forte interaction interfaciale entre C₆₀ et BiVO₄, ce qui a fourni un transfert de charge efficace et une stabilité remarquable du composite BiVO₄-APS-C₆₀. Par conséquent, BiVO₄-APS-C₆₀ a montré une activité photocatalytique beaucoup plus élevée vis-à-vis la dégradation de ciprofloxacine sous irradiation solaire. Le nanocomposite Bi₂WO₆/NH₂-UiO-66 a été développé par l'incorporation de NH₂-UiO-66 sur Bi₂WO₆ ayant une forme micro/nanoflorale dans le but d'améliorer l'activité photocatalytique pour la dégradation de ciprofloxacine sous l'irradiation de la lumière solaire. L'activité photocatalytique améliorée, expliquée par la formation d'une hétérojonction avec un fort contact interfacial entre Bi₂WO₆ et NH₂-UiO-66, a permis d'élargir le domaine d'absorption lumineuse, de réduire la recombinaison de paires électron-trou photo générées et d'accélérer le transfert des porteurs de charges. L'hétérojonction Bi₂WO₆/NH₂-UiO-66 suit le mécanisme de transfert de charge de type Z-schème et possède des sites hautement réactifs offrant une forte propriété redox au composite Bi₂WO₆/NH₂-UiO-66. / The solar photocatalytic technique is a promising solution for the effective removal of antibiotics, which are emerging pharmaceutical pollutants in water and wastewater. The semiconductor based photocatalytic materials plays crucial role in achieving the complete degradation of these pharmaceutical pollutants. In this direction, the design of nanostructured hybrid photocatalysts shows superior catalytic performance as compared to the conventional photocatalysts towards the effective degradation of antibiotic molecules in water. These nanostructured hybrid photocatalysts overcome the limitations of weak photoabsorption, poor charge separation, slow charge transfer, high charge recombination, limited surface reaction, lesser stability and difficult recovery. In this context, we have developed potential nanostructured and nanocomposite photocatalytic materials and explored their performance in degradation of antibiotics under solar light. Novel ferroelectric perovskite material, nanostructured calcium bismuthate (CaBiO₃) with distinct Bi³⁺ and Bi⁵⁺ multi-charge disproportion was developed via glycine-complexation and ion-exchange methods. The efficient Bi³⁺/Bi⁵⁺ charge disproportion and well-organized BiO₆ octahedral crystal arrangement provided an enhanced visible photo-absorbance and higher charge carrier generation and separation to CaBiO₃ system. The developed CaBiO₃ materials exhibited nanostructure with higher surface area which provided enhanced surface properties for catalytic reactions. Moreover, the developed CaBiO₃ materials were potentially explored for degradation of ciprofloxacin and tetracycline antibiotic drugs under solar light. An efficient BiVO₄-APS-C₆₀ nanocomposite was developed by integrating aminosilicate functionalized C₆₀ nanoparticles on the surface of ultrathin BiVO₄ nanolayers. The integration of C₆₀ on BiVO₄ broadened the light absorption spectrum in the visible light range and offered an enhanced generation and separation of the photoinduced charge carriers. The aminosilicate group established a strong interfacial interaction between C₆₀ and BiVO₄, which provided remarkable charge transfer efficiency and stability for BiVO₄-APS-C₆₀ composite. The as-synthesized BiVO₄-APS-C₆₀ displayed high photocatalytic activity towards ciprofloxacin degradation under solar light irradiation. Bi₂WO₆/NH₂-UiO-66 nanocomposite was designed incorporating NH₂-UiO-66 with Bi₂WO₆ micro/nanoflower for enhanced photocatalytic activity towards ciprofloxacin degradation under solar light irradiation. The improved photocatalytic activity attributed to the formation of heterojunction with strong interface contact between Bi₂WO₆ and NH₂-UiO-66, broadened the photoabsorbance range, reduced photogenerated electron-hole pair recombination, and accelerated charge carrier transfer. The Bi₂WO₆/NH₂-UiO-66 heterojunction follows Z-scheme charge transfer mechanism with high surface reactive sites providing strong redox property to Bi₂WO₆/NH₂-UiO-66 composite.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/71125 |
Date | 02 February 2024 |
Creators | Karuppannan, Rokesh |
Contributors | Trong-On, Do |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xviii, 131 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.003 seconds