Dans l’atmosphère, les particules d’aérosol jouent un rôle clef sur le climat et, par leur action sur la qualité de l’air, ont un impact néfaste sur la santé publique. Ces particules sont composées d’un mélange complexe d’espèces inorganiques et organiques formées à partir d’une grande variété de sources. Si les sources et mécanismes de production des espèces inorganiques sont désormais relativement bien connus, la caractérisation de la fraction organique des aérosols est beaucoup plus complexe : elle est constituée d’aérosols organiques primaires, émis directement dans l’atmosphère, et d’aérosols organiques secondaires (AOS) produits par la conversion gaz-particules de Composés Organiques Volatils (COV). Afin de comprendre les processus de formation des aérosols organiques, des modèles tridimensionnels de chimie-transport sont mis en œuvre. Or, à ce jour, les concentrations en aérosols organiques observées dans l’atmosphère demeurent sous-estimées par ces modèles. L’objectif de cette thèse est d’étudier les différents processus de transport, d’émissions et de transformations chimiques intervenant dans la formation des aérosols organiques à partir du modèle de chimie-transport WRF-Chem (Weather Research and Forecasting – Chemistry). Les sorties du modèle ont été comparées à des mesures effectuées à la station du puy de Dôme au cours de trois situations correspondant à trois saisons (automne, hiver, été) durant lesquelles des masses d’air de diverses origines ont été échantillonnées. Ces mesures documentent les conditions météorologiques, les propriétés des espèces chimiques gazeuses et des particules d’aérosol. En particulier, les mesures fournies par un spectromètre de masse (AMS : Aerosol Mass Spectrometer), fournissent de informations détaillées sur la variabilité temporelle de la composition chimique des aérosols et notamment sur leur concentration en masse. Les comparaisons modèle/mesures ont montré que les variations saisonnières de la composition chimique des aérosols observées au puy de Dôme étaient bien capturées par le modèle. Cependant, il s’est avéré que les concentrations en aérosols organiques étaient fortement sous-estimées par le modèle et plus particulièrement lors de la situation d’été. La confrontation des origines des masses d’air simulées par le modèle WRF-Chem à celles déterminées par le modèle lagrangien HYSPLIT reconnu pour l’étude de la dispersion atmosphérique et l’analyse des variations de la localisation du sommet du puy de Dôme vis-à-vis de la couche limite atmosphérique ont mis en évidence que le transport était correctement reproduit par le modèle. Les mesures de gaz disponibles au puy de Dôme ont mis en évidence une forte sous-estimation des concentrations en COV d’origine anthropique simulées par le modèle. Des tests de sensibilité ont été réalisés sur les émissions de ces espèces pour restituer les niveaux de concentration observés. Les émissions et les rendements en AOS des COV d’origine anthropique implémentés dans la paramétrisation VBS dédiée aux aérosols organiques dans le modèle ont pu être modifiés afin de reproduire les niveaux de concentration en aérosols organiques observés au puy de Dôme. / In the atmosphere, aerosol particles play a key role on both climate change and human health due to their effect on air quality. These particles are made of a complex mixture of organic and inorganic species emitted from several sources. Although the sources and the production mechanisms for inorganic species are now quite well understood, the characterization of the organic fraction is much more difficult to study. Indeed, particulate organic matter comes from primary organic aerosols directly emitted to the atmosphere and secondary organic aerosols (SOA), which are formed from gas-to-particle conversion of Volatile Organic Compounds (VOC). Three-dimensional chemistry-transport models are developed to better understand the organic aerosol formation processes. However, these models underestimate the organic aerosol concentrations. The aim of this thesis is to study the transport, the emissions and the chemical transformations involved in the formation of the organic aerosols using the WRF-Chem chemistry-transport model (Weather Research and Forecasting – Chemistry; Grell .et al., 2005). Model outputs are compared to measurements performed at the puy de Dôme station (France) during three campaigns. These measurements allow for characterizing various air masses and different seasonal behaviours (in autumn, winter and summer). The station hosts many probes for controlling meteorological parameters, gas phase species and aerosol properties. In particular, a mass spectrometer (AMS: Aerosol Mass Spectrometer) provides detailed time evolution of the chemical composition and mass concentration of the particulate matter. The comparisons between model results and observations have shown that seasonal variations of the aerosol chemical composition are captured by the WRF-Chem model. However, the organic aerosols mass concentrations are strongly underestimated and this underestimation is more important for the polluted summer case. The calculated origins of air masses are comparable to the results of the lagrangian model HYSPLIT currently used for atmospheric dispersion. The top of the puy de Dôme is observed to be either in the boundary layer or above depending on the season and these observations are correctly reproduced by the WRF-Chem model. As the anthropogenic VOC concentrations are underestimated by WFR-Chem model, sensitivity tests on the anthropogenic VOC emissions and SOA yields, used in the VBS secondary organic aerosols parameterisation, are done to better reproduce the organic aerosol concentrations observed at the puy de Dôme station.
Identifer | oai:union.ndltd.org:theses.fr/2014CLF22473 |
Date | 02 July 2014 |
Creators | Barbet, Christelle |
Contributors | Clermont-Ferrand 2, Chaumerliac, Nadine, Deguillaume, Laurent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds