A self-sensing material can not only carry a load but can also provide data aboutthe load and stress it’s being subjected to. Traditional additive manufacturing haslimited capabilities in producing self-sensing material. Existing 3D printers eitherused in industry or in scientific applications are either limited by closed-off software and planar motion which limits the design freedom, or the type of material orcost often limiting the attainability. Being capable of placing self-sensing materialwith full design freedom means that the sensor structure as well as the load carryingpart of the material can be tailored to the application specific use of the material,making application specific load carrying and sensing capabilities possible. Themanufacturing method produced in this aims to solve these existing limitations. Aliterature review in the topic of additive manufacturing of self-sensing material andcontinuous Carbon Fiber Reinforced Thermoplastics (CFRTPs) has been producedas a literature base. The review seeks to educate and inspire the design of an noveladditive manufacturing method and device capable of printing a self-sensing material as well as non-planar motion. A design for extruding self-sensing material andnon-planar motion has been realized through modified Commercial-Off-The-Shelf(COTS) parts and Geometric Code (G-Code). Existing hardware capable of producing this can be priced in the range of 70 000 C, but this result has been achievedwith around 200 C [42]. A software structure capable of manufacturing the selfsensing material has been produced. Real-world testing in terms of extrusion of theself-sensing material and non-planar motion has been tested and proven which arethe main practical outcomes demonstrating the technological feasibility.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-92024 |
Date | January 2022 |
Creators | Angeria, Benyam |
Publisher | Luleå tekniska universitet, Rymdteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds