Computed Tomography (CT) is the standard in medical imaging field. In this study, we look at the curvelet transform in an attempt to use it as a basis for representing a function. In doing so, we seek a way to reconstruct a function from the Radon data that may produce clearer results. Using curvelet decomposition, any known function can be represented as a sum of curvelets with corresponding coefficients. It can be shown that these corresponding coefficients can be found using the Radon data, even if the function is unknown. The use of curvelets has the potential to solve partial or truncated Radon data problems. As a result, using a curvelet representation to invert radon data allows the chance of higher quality images to be produced. This paper examines this method of reconstruction for computed tomography (CT). A brief history of CT, an introduction to the theory behind the method, and implementation details will be provided.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-3528 |
Date | 01 January 2013 |
Creators | Dickerson, Jill |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0018 seconds