Obwohl das Angebot von Feedback in Lehr-Lernsituationen eine wichtige instruktionale Maßnahme darstellt,um Lernende in ihrem Lernprozess zu unterstützen, wird dessen Potenzial in multimedialen Lernumgebungen nur selten optimal genutzt. Feedback, welches in aller Regel im Anschluss an die Bearbeitung von Lernaufgaben bereitgestellt wird und den Lerner über die Qualität seiner Aufgabenbearbeitung informiert, beschränkt sich häufig auf die Bereitstellung einer richtig/falsch Rückmeldung mit einem sich anschließenden, zusätzlichen Lösungsversuch bzw. der Präsentation der richtigen Lösung. Als prototypisch für diese Art der Feedbackgestaltung erweist sich das in mathematischer Grundschulsoftware implementierte Feedback. Der Lerner erhält weder Informationen zu dem Ort und der Art des Fehlers noch einen Hinweis auf die korrekte Lösungsstrategie. Vor diesem Hintergrund bestand ein zentrales Ziel der vorliegenden Arbeit in der Entwicklung von fehlerspezifischem informativem tutoriellem Feedback (ITF) für die schriftliche Subtraktion auf der Grundlage des heuristischen Feedbackmodells von Narciss (2004) und der aus diesem Modell abgeleiteten Gestaltungsprinzipien für ITF. Obwohl allgemein erwartet wird, dass informatives Feedback lernwirksamer ist als Feedback, welches nur die richtige Lösung präsentiert, konnte diese Annahme durch die Ergebnisse der empirischen Feedbackforschung bisher nicht bestätigt werden. So ist die Feedbackforschung durch eine inkonsistente Befundlage gekennzeichnet. Vor diesem empirischen Hintergrund bestand ein weiteres zentrales Ziel der vorliegenden Arbeit in der Überprüfung der Effektivität des entwickelten fehlerspezifischen ITFs hinsichtlich verschiedener Lern- und motivationaler Parameter. Fehlerspezifisches ITF zeichnet sich dadurch aus, dass bei fehlerhaften Aufgabenlösungen Informationen angeboten werden, die auf der Grundlage einer kognitiven Anforderungs- und Fehleranalyse als korrekturrelevant identifiziert worden waren. Diese korrekturrelevanten Informationen werden dem Lernenden ohne Bekanntgabe der korrekten Lösung präsentiert, so dass sich dieser dazu aufgefordert sieht, die bereitgestellten strategischen Informationen in einem erneuten Lösungsversuch unmittelbar anzuwenden. In zwei Studien mit Viertklässlern wurde dieses computergestützte ITF im Hinblick auf seine Lern- und motivationale Wirksamkeit evaluiert. In der ersten Studie (N = 30) erfolgte diese Evaluation gegen eine Feedbackbedingung, welche das üblicherweise in mathematischer Lernsoftware realisierte Knowledge of Response und Knowledge of Correct Response (KR-KCR) Feedback präsentierte. In der zweiten Studie (N = 105) wurden zwei zusätzliche Feedbackbedingungen "Knowledge about Mistake (KR-KM) und Knowledge on How to proceed (KR-KH)" aufgenommen. Diese sind in ihrem Informationsgehalt zwischen dem ITF und dem KR-KCR Feedbackalgorithmus anzusiedeln. Die Ergebnisse beider Studien bestätigen die postulierte Lern- und motivationale Wirksamkeit des fehlerspezifischen ITFs für die schriftliche Subtraktion. Besonders im Vergleich zu der wenig informativen KR-KCR Feedbackbedingung konnten in beiden Studien signifikante Wirksamkeitsunterschiede nachgewiesen werden. Auch im Vergleich zu den komplexeren Feedbackformen Knowledge about mistake (KR-KM) und Knowledge on how to proceed (KR-KH) konnten für die Schüler der ITF Bedingung bessere Leistungen beobachtet werden, auch wenn diese Unterschiede nur partiell signifikant wurden. Die Ergebnisse der vorliegenden Untersuchungen zeigen, dass es möglich ist, auf der Grundlage des von Narciss (2004) vorgestellten Feedbackmodells und der aus diesem Feedbackmodell abgeleiteten Gestaltungsprinzipien lern- und motivationsförderliches ITF zu entwickeln. So liefern die Ergebnisse beider Studien erste empirische Belege für die Annahme, dass informatives Feedback nicht nur den Lernprozess unterstützt, sondern auch motivationsförderlich wirkt. / Feedback is considered to be an important factor to promote learning and motivation with computer-based training tools. However the findings of studies on the effectiveness of feedback are rather inconsistent. One reason for these inconsistent findings might be that the implementation of feedback is more based on intuition than on well-founded design principles. Therefore the aims of the present work was (1) to develop theoretical well-founded elaborated feedback forms for a procedural skill like the written subtraction, (2) to implement them in an adaptive feedback algorithm that induces the mindful processing of feedback, and (3) to evaluate this elaborated feedback regarding his impact on learning and motivation. Using results from prior feedback research and from cognitive task and error analysis of written subtraction tasks, information relevant to the correction of typical systematic errors (e.g. location of error, source of error, type of error and hints to the correct solution strategy) were selected. This information was used to design different types of bug-related feedback messages. These different feedback messages were arranged in an adaptive bug-related algorithm presenting three levels of feedback with increasing informational value to support the learner in finding the correct solution on his own. Because the developed feedback allows assisted multiple response attempts for an item by providing relevant information for error correction, but no immediate Knowledge of Correct Response (KCR) feedback, and by encouraging the learner to apply the corrective information to a further attempt, this kind of feedback was called bug-related "informative tutoring feedback (ITF)". In two computer-based learning experiments cognitive and motivational effects of this bug-related ITF were evaluated with forth-grade students with difficulties in written subtraction. In the first study (N=30) the bug-related ITF was compared to the effects of a standard Knowledge of Result-Knowledge of Correct Response feedback (KR-KCR) algorithm. In the second study (N=105) two additional feedback algorithms - Knowledge about Mistake (KR-KM) und Knowledge on How to proceed (KR-KH) - were implemented. These both feedback algorithms range between the bug-related ITF and the simple KR-KCR feedback regarding to their amount of information. In both studies significant positive effects of the bug-related ITF compared to the KR-KCR feedback could be found. Regarding to the more informative KR-KM and KR-KH feedback a positive effect of the bug-related ITF could be showed sporadic. These results are discussed in detail.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:24442 |
Date | 07 December 2004 |
Creators | Huth, Katja |
Contributors | Körndle, Hermann, Goschke, Thomas, Stern, Elsbeth |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German |
Detected Language | German |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0136 seconds