Because of an eventual ban of creosote-impregnated products, alternative materials for poles used in the electrical grid are needed. Concrete is one alternative and spun concrete poles have been manufactured for the Swedish grid before. These poles are still in use since the high strength and good functioning. However, they weigh too much in terms of the way that poles are assembled on the grid today. Therefore, a study comparing the capacity of different geometries, resulting in lower weight, is of interest. In this Master’s Thesis, crack initiation and compressive failure in concrete poles are examined by creating FE-models in the software BRIGADE/Plus, using concrete damage plasticity. Thus, guidance is provided about how thin the concrete walls can be made without risking failure – which also means how low the weight of such a pole can be. The failure most likely to occur is a compressive failure in the concrete with a ductile behavior. The result shows that a geometry change, which implies a thinner concrete wall, is possible. This means a weight reduction between 30-75 % or even more, depending on which network the poles are designed for.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-66823 |
Date | January 2017 |
Creators | Bülow Angeling, Jenny |
Publisher | Linnéuniversitetet, Institutionen för byggteknik (BY) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds