We study the atom-light interaction in the fully quantum regime, with the focus on off-resonant light scattering into a cavity from ultracold atoms trapped in an optical lattice. Because of the global coupling between the atoms and the light modes, observing the photons leaking from the cavity allows the quantum nondemolition (QND) measurement of quantum correlations of the atomic ensemble, distinguishing between different quantum states. Moreover, the detection of the photons perturbs the quantum state of the atoms via the so-called measurement backaction. This effect constitutes an unusual additional dynamical source in a many-body strongly correlated system and it is able to efficiently compete with its intrinsic short-range dynamics. This competition becomes possible due to the ability to change the spatial profile of a global measurement at a microscopic scale comparable to the lattice period, without the need of single site addressing. We demonstrate nontrivial dynamical effects such as large-scale multimode oscillations, breakup and protection of strongly interacting fermion pairs. We show that measurement backaction can be exploited for realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves and we demonstrate that such long-range correlations cannot be realized with local addressing. Finally, we describe how to stabilize these emerging phases with the aid of quantum feedback. Such a quantum optical approach introduces into many-body physics novel processes, objects, and methods of quantum engineering, including the design of many-body entangled environments for open systems and it is easily extendable to other systems promising for quantum technologies.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:730029 |
Date | January 2016 |
Creators | Mazzucchi, Gabriel |
Contributors | Mekhov, Igor B. |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://ora.ox.ac.uk/objects/uuid:6c6eddac-41de-476d-851e-6630907965e6 |
Page generated in 0.0018 seconds