In this work, an in-depth analysis of crystalline characteristics has been performed for a unique set of strictly monodisperse poly-ε-caprolactone (PCL) oligomers. The molecules have different sets of end groups with various degrees of bulkiness and hydrogen bonding potential, affecting their aptitude to pack in ordered crystal structures. The oligomers also have different numbers of repeating units (n = 2-64), affecting the degree to which end groups influence overall molecular characteristics. The presence of bulky end groups leads to an innate confinement effect on crystallisation which in turn makes it possible to utilize the set of PCL oligomers to study confined space crystallisation. Confined space crystallisation is explored as a route to gain further understanding about the early metastable phases in crystal formation. The monodisperse nature of the samples made it possible to collect very precise small-angle and wide-angle X-ray scattering data (SAXS and WAXS) as well as calorimetric data. Computer modeling studies were performed to support experimental findings. It was shown that end groups strongly affected crystallisation features for the shorter oligomers (n ≤ 8) but to a lesser extend for the longer oligomers (n ≥ 16). The presence of a bulky end group at one end of an oligomer could inhibit the formation of hydrogen bonds on the other end. Short oligomers (n = 8) with OH-end groups exhibited novel packing characteristics. At one isothermal crystallisation temperature the molecules exhibited not only lamellar ordering but also an additional, likely rectangular or slanted, ordering. The sample was packed in a unique structure with molecular chains lying parallel but not aligned head to head with each other. At a higher crystallisation temperature the molecules packed in a double layered structure and at an even higher temperature in a typical non-folded but tilted single-molecular layer pattern. Unit cell determination was performed for a short oligomer with two bulky end groups, showing the existence of a tetragonal unit cell with different dimensions than the orthorhombic unit cells previously reported for linear PCL without end groups. To gain greater insight into the earliest stages of molecular packing, in situ WAXS measurements were performed using a synchrotron radiation beam and measuring data each 12 s whilst very slowly going from melt to isothermal crystallisation. It was shown that the crystal unit cell was distorted during the first minutes of slow crystallisation, which might either represent a metastable phase or else a highly distorted orthorhombic phase. / QC 20101105
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-11305 |
Date | January 2009 |
Creators | Sanandaji, Nima |
Publisher | KTH, Fiber- och polymerteknologi, Stockholm : Universitetsservice US AB |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Trita-CHE-Report, 1654-1081 ; 2009:58 |
Page generated in 0.003 seconds