Return to search

Stochastic Identification of Pollutant Sources in Aquifers by the Ensemble Kalman Filter

[ES] Como parte de los métodos de asimilacíon de datos, los métodos basados en conjuntos han ganado popularidad en hidrogeología dada su capacidad para manejar grandes cantidades de datos observados simultáneamente. Recientemente, se ha comenzado a emplear este método para la identificacíon de fuentes de contaminacíon en casos sintéticos. Basándonos en estos trabajos anteriores, hemos dado un paso adelante evaluando su rendimiento en experimentos de tanque de laboratorio.
La tesis se puede dividir en cuatro partes. En la primera parte, el filtro de Kalman de conjuntos con reinicio (r-EnKF) se utiliza para la identificacíon espacio-temporal de una fuente puntual de contaminantes en un experimento en tanque de laboratorio, junto con la identificacíon de la posicíon y longitud de una placa vertical insertada en el tanque que modifica la geometría del sistema. Los resultados muestran que el r-EnKF es capaz de identificar tanto la fuente como los parámetros relacionados con la geometría del acuífero.
La segunda parte muestra una aplicacíon del filtro de Kalman de conjuntos con anamorfosis normal y reinicio (NS-EnKF) y con inflacíon de la covarianza en un experimento de laboratorio con conductividad heterogénea. El método se prueba primero utilizando un caso sintético que imita el experimento del tanque para establecer el número mínimo de miembros del conjunto y la mejor técnica para evitar el colapso del filtro. Luego, su aplicacíon a los datos del tanque muestra que el NS-EnKF con reinicio puede beneficiarse de la inflacíon de Bauser para reducir el tama ñ o del conjunto y llegar a una buena identificacíon conjunta tanto de la fuente de contaminantes como de la heterogeneidad espacial de las conductividades.
En la tercera parte, el filtro de Kalman de conjuntos suavizado con asimilacíon múltiple de datos (ES-MDA) se emplea para la identificacíon simultánea de una fuente de contaminantes y la distribucíon espacial de la conductividad hidráulica utilizando el r-EnKF como punto de referencia. El resultado muestra que el ES-MDA puede superar al r-EnKF, marginalmente, para el caso sintético específico analizado con el mismo consumo de CPU, y puede funcionar mucho mejor que el r-EnKF a cambio de un mayor costo de CPU.
La cuarta y última parte investiga el rendimiento del ES-MDA en un problema de identificacíon de una inyeccíon de contaminante que varía en el tiempo. Se analiza la influencia de diferentes intervalos de observacíon y esquemas de inflacíon de la covarianza en la determinacíon de la curva de inyeccíon. El resultado muestra que el ES-MDA funciona muy bien en la identificacíon de la curva de inyeccíon cuando la discretizacíon de la misma no es muy alta, pero encuentra problemas de fluctuacíon en los casos con discretizaciones altas. La frecuencia con la que se muestrean los datos de observacíon es un factor influyente, mientras que el número de iteraciones o los métodos de inflacíon de la covarianza tienen menos efecto. / [CA] Com a part dels mètodes d'assimilació de dades, els mètodes basats en conjunts han guanyat popularitat en hidrogeologia donada la seua capacitat per a manejar grans quantitats de dades observades simultàniament. Recentment, s'ha començat a emprar aquest mètode per a la identificació de fonts de contaminació en casos sintètics. Basant-nos en aquests treballs anteriors, hem fet un pas avant avaluant el seu rendiment en experiments de tanc de laboratori. La tesi es pot dividir en quatre parts.En la primera part, el filtre de Kalman de conjunts amb reinici (r-EnKF) s'utilitza per a la identificació espaciotemporal d'una font puntual de contaminants en un experiment en tanc de laboratori, juntament amb la identificació de la posició i longitud d'una placa vertical inserida en el tanc que modifica la geometria del sistema. Els resultats mostren que el r-EnKF és capaç d'identificar tant la font com els paràmetres relacionats amb la geometria de l'aqüífer.
La segona part mostra una aplicació del filtre de Kalman de conjunts amb anamorfosis normal i reinici (NS-EnKF) i amb inflació de la covariància en un experiment de laboratori amb conductivitat heterogènia. El mètode es prova primer utilitzant un cas sintètic que imita l'experiment del tanc per a establir el nombre mínim de membres del conjunt i la millor tècnica per a evitar el col·lapse del filtre. Després, la seua aplicació a les dades del tanc mostra que el NS-EnKF amb reinici pot beneficiar-se de la inflació de Bauser per a reduir la grandària del conjunt i arribar a una bona identificació conjunta tant de la font de contaminants com de l'heterogeneïtat espacial de les conductivitats.
En la tercera part, el filtre de Kalman de conjunts suavitzat amb assimilació múltiple de dades (ES-MDA) s'empra per a la identificació simultània d'una
font de contaminants i la distribució espacial de la conductivitat hidràulica utilitzant el r-EnKF com a punt de referència. El resultat mostra que l'ES-MDA pot superar al r-EnKF, marginalment, per al cas sintètic específic analitzat amb el mateix consum de CPU, i pot funcionar molt millor que el r-EnKF a canvi d'un major cost de CPU.
La quarta i última part investiga el rendiment de l'ES-MDA en un problema d'identificació d'una injecció de contaminant que varia en el temps. S'analitza la influència de diferents intervals d'observació i esquemes de inflació de la covariància en la determinació de la corba d'injecció. El resultat mostra que l'ES-MDA funciona molt bé en la identificació de la corba d'injecció quan la discretització no és massa alta, però troba problemes de fluctuació amb discretitzacions massa fines. La freqüència amb la qual es mostregen les dades d'observació és un factor influent en aquesta aplicació, mentre que el nombre d'iteracions o els mètodes d'inflació de la covariància tenen menys efecte. / [EN] As part of the data assimilation methods, the ensemble-based methods have gained popularity in hydrogeology given their ability to deal with huge amounts of observed data simultaneously. More recently, researchers have started to employ these methods to deduce contamination source information in synthetic cases. Based on these previous work, we take a step further to evaluate their performance in sandbox experiments. The main objective of this thesis is to verify the capacity of the ensemble-based methods in identifying contaminant sources and complex geological heterogeneity.
The thesis could be divided into four parts. In the first part, the restart ensemble Kalman filter (r-EnKF) is used for the spatiotemporal identification of a point contaminant source in a sandbox experiment, together with the identification of the position and length of a vertical plate inserted in the sandbox that modifies the geometry of the system. The results show that the r-EnKF is capable of identifying both contaminant source information and aquifer-geometry-related parameters.
The second part shows an application of the restart normal-score ensemble Kalman filter (NS-EnKF) with covariance inflation in a heterogenous conductivity laboratory experiment. The method is first tested using a synthetic case that mimics the sandbox experiment to establish the minimum number of ensemble members and the best technique to prevent filter collapse. Then, its application to the sandbox data shows that the restart NS-EnKF can benefit from Bauser's inflation to reduce the ensemble size and to arrive to a good joint identification of both the contaminant source and the spatial heterogeneity of conductivities.
In the third part, the ensemble smoother with multiple data assimilation (ES-MDA) is employed for the simultaneous identification of a contaminant source and the spatial distribution of hydraulic conductivity while using the r-EnKF as a benchmark. The outcome shows that the ES-MDA is able to outperform the r-EnKF, marginally, for the specific synthetic case analyzed with almost the same CPU consumption, and it can perform far better than the r-EnKF just with a cost of larger CPU usage.
The forth and last part investigates the performance of the ES-MDA in a time-varying release history identification problem. The influence of different observation intervals and inflation factor schemes on the determination of the release curve are discussed. The outcome shows that the ES-MDA performs great in recovering release history when the history curve is discretized in not too many steps, and that it fails when the discretization is large. The frequency at which observation data are sampled is an influential factor in this application, while the number of iterations or the inflation scheme have less effect. / Thanks to the institutions that financed my studies. The support to carry out my work was received from the Spanish Ministry of Economy and Competitiveness through project CGL2014-59841-P, and from the Spanish Ministry of Education, Culture and Sports through a fellowship for the mobility of professors in foreign research and higher education institutions to my supervisor, reference PRX17/00150 / Chen, Z. (2020). Stochastic Identification of Pollutant Sources in Aquifers by the Ensemble Kalman Filter [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/160628

Identiferoai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/160628
Date01 February 2021
CreatorsChen, Zi
ContributorsGómez Hernández, José Jaime, Xu, Teng, Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient, Ministerio de Educación, Cultura y Deporte, Ministerio de Economía y Competitividad
PublisherUniversitat Politècnica de València
Source SetsUniversitat Politècnica de València
LanguageEnglish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion
Rightshttp://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess
Relationinfo:eu-repo/grantAgreement/MINECO//CGL2014-59841-P/ES/¿QUIEN HA SIDO?/, info:eu-repo/grantAgreement/MECD//PRX17%2F00150/

Page generated in 0.0041 seconds