Monitoring wear particles in lubricating oils allows specialists to evaluate thehealth and functionality of a mechanical system. The main analysis techniquesavailable today are manual particle analysis and automatic optical analysis. Man-ual particle analysis is effective and reliable since the analyst continuously seeswhat is being counted . The drawback is that the technique is quite time demand-ing and dependent of the skills of the analyst. Automatic optical particle countingconstitutes of a closed system not allowing for the objects counted to be observedin real-time. This has resulted in a number of sources of error for the instrument.In this thesis a new method for counting particles based on light microscopywith image analysis is proposed. It has proven to be a fast and effective methodthat eliminates the sources of error of the previously described methods. Thenew method correlates very well with manual analysis which is used as a refer-ence method throughout this study. Size estimation of particles and detectionof metallic particles has also shown to be possible with the current image analy-sis setup. With more advanced software and analysis instrumentation, the imageanalysis method could be further developed to a decision based machine allowingfor declarations about which wear mode is occurring in a mechanical system.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-68750 |
Date | January 2011 |
Creators | Ceco, Ema |
Publisher | Linköpings universitet, Datorseende |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds