Return to search

Evolving Models From Observed Human Performance

To create a realistic environment, many simulations require simulated agents with human behavior patterns. Manually creating such agents with realistic behavior is often a tedious and time-consuming task. This dissertation describes a new approach that automatically builds human behavior models for simulated agents by observing human performance. The research described in this dissertation synergistically combines Context-Based Reasoning, a paradigm especially developed to model tactical human performance within simulated agents, with Genetic Programming, a machine learning algorithm to construct the behavior knowledge in accordance to the paradigm. This synergistic combination of well-documented AI methodologies has resulted in a new algorithm that effectively and automatically builds simulated agents with human behavior. This algorithm was tested extensively with five different simulated agents created by observing the performance of five humans driving an automobile simulator. The agents show not only the ability/capability to automatically learn and generalize the behavior of the human observed, but they also capture some of the personal behavior patterns observed among the five humans. Furthermore, the agents exhibited a performance that was at least as good as agents developed manually by a knowledgeable engineer.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-1089
Date01 January 2004
CreatorsFernlund, Hans Karl Gustav
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0017 seconds