Return to search

Modélisation et contrôle d'une aile en présence d'oscillations aéroélastiques de grande amplitude et à faible nombre de Reynolds / Modeling and control of a wing at low Reynolds number with high amplitude aeroelastic oscillations

L’objectif de cette thèse est de fournir une approche générale permettant d’aborder les problèmes de contrôle aéroélastique.Tout d’abord, un modèle d’aile oscillante est développé afin de rendre compte des phénomènes d’hystérésis des charges aérodynamiques et de décrochage dynamique qui peut être observé, particulièrement à fort angles d’attaque ou à faible nombre de Reynolds. Le modèle est alors entraîné et comparé avec succès aux résultats expérimentaux obtenus pour une aile NACA 0018. Ce modèle, comme de nombreux modèles aérodynamiques, souffre d’une complexité inhérente et de non-linéarités qui rendent son analyse et son contrôle complexes. Par conséquent, le modèle a été modifié afin d’inclure les non-linéarités dans une formulation polytopique aux paramètres incertains. S’appuyant sur la théorie de la commande linéaire quadratique et utilisant les inégalités des matrices linéaires, plusieurs théorèmes sont développés, considérant les saturations qui sont un problème majeur et récurent de la dynamique du vol. Les théorèmes sont alors appliqués avec succès au cas du stall flutter en présence de saturations en position et en vitesse. / This thesis aims at providing a general approach for aeroelastic control. First, an aeroelastic model of an oscillating wing is developed to capture the phenomena of hysteresis of aerodynamic load and dynamic stall which can be observed at low Reynolds number or large angles of attack. The model is then trained and successfully compared to experimental data for a NACA 0018 wing. This model, like many aeroelastic models, suffers from its inherent complexity and nonlinearities which make its analysis and control challenging. Consequently, the set of equations is conveniently manipulated to encapsulate the nonlinearities in a polytopic formulation with unknown parameters. Then, based on linear quadratic regulation theory and using framework of linear matrix inequalities, several theorems are developed considering saturations which are a major and recurrent issue in flight control. The theorems are then successfully applied to solve the problem of stall flutter in presence of rate and magnitude saturations.

Identiferoai:union.ndltd.org:theses.fr/2018ESAE0003
Date26 January 2018
CreatorsNiel, Fabien
ContributorsToulouse, ISAE, Zaccarian, Luca, Seuret, Alexandre
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0023 seconds