Les systèmes hybrides sont des systèmes dynamiques, caractérisés par un comportementdual, une interaction entre une partie discrète et une partie continue de fonctionnement.Dans le centre de notre travail se trouve une classe particulière de systèmeshybrides, plus spécifiquement les systèmes stochastiques à commutation que nous modélisonsà l'aide des Chaînes de Markov en temps continu et des équations différentielles.Le comportement aléatoire de ce type de système nécessite une commande spécialequi s'adapte aux événements arbitraires qui peuvent changer complètement l'évolutiondu système. Nous avons choisi une politique de contrôle basée sur les événements quiest déclenchée seulement quand il est nécessaire (sur un événement incontrôlable - parexemple un seuil qui est atteint), et jusqu'à ce que certaines conditions de fonctionnementsont remplies (le système revient dans l'état normal).Notre approche vise le développement d'un modèle probabiliste qui permet de calculerun critère de performance (en occurrence l'énergie du système) pour la politiquede contrôle choisie. Nous proposons d'abord une méthode de simulation à événementsdiscrets pour le système stochastique à commutation commandé, qui nous donne la possibilitéde réaliser une optimisation directe de la commande appliquée sur le système etaussi de valider les modèles analytiques que nous avons construit pour l'application ducontrôle.Un modèle analytique pour déterminer l'énergie consommée par le système a étéconçu en utilisant les probabilités de sortie de la région de contrôle, respectivement lestemps de séjour dans la chaîne de Markov avant et après avoir atteint les limites decontrôle. La dernière partie du travail présente la comparaison des résultats obtenusentre la méthode analytique et la simulation.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00770325 |
Date | 18 September 2012 |
Creators | Mihaita, Adriana, Mihaita, Adriana |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds