Return to search

Problemas de controle ótimo intervalar e intervalar fuzzy /

Orientador: Edvaldo Assunção / Resumo: Neste trabalho estudamos problemas de controle ótimo intervalar e intervalar fuzzy. Em particular, propomos problemas de controle ótimo via teoria de incerteza generalizada e teoria dos conjuntos fuzzy. Dentre os vários tipos de incerteza generalizada utilizamos apenas a intervalar. Embora as abordagens do processo de solução dos problemas de controle ótimo intervalar e intervalar fuzzy sejam similares, as premissas iniciais para o uso e identificação de aplicação delas em problemas práticos são distintas assim como é distinto o processo de tomada de decisão. Assim, propomos inicialmente o problema de controle ótimo intervalar em tempo discreto. A primeira proposta de solução para o problema de controle ótimo intervalar em tempo discreto é construída usando a aritmética intervalar restrita de níveis simples juntamente com a técnica de programação dinâmica. As respostas do problema de controle ótimo intervalar contêm as possibilidades de soluções viáveis, e para implementar uma solução viável para o usuário final usamos a solução que minimiza o arrependimento máximo nos exemplos numéricos. A segunda proposta de solução para o problema de controle ótimo intervalar em tempo discreto é realizada com a aritmética intervalar restrita uma vez que essa aritmética intervalar é mais geral do que a aritmética intervalar restrita de níveis simples pois não considera os intervalos envolvidos nas operações variando de forma dependente. Exemplos numéricos também foram construídos e ilustram... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In this work we study the interval optimal control problem and fuzzy interval optimal control problem. In particular, we propose optimal control problems via theory of generalized uncertainty and fuzzy set theory. Among the various types of generalized uncertainty we use only the interval uncertainty. Although the approaches to solve the interval optimal control problem and fuzzy interval optimal control problem are similar, the input data for problems with generalized uncertainty and flexibility are distinct as is distinct the decision-making process. Thus, we initially propose the discrete-time interval optimal control problem. The first solution method to solve the discrete-time interval optimal control problem is constructed using single-level constrained interval arithmetic coupled with a dynamic programming technique. The optimal interval solution contains the real-valued optimal solutions, and to implement a feasible solution to the user we use the minimax regret criterion in numerical examples. The second solution method to solve the discrete-time interval optimal control problem is done with the constrained interval arithmetic since this interval arithmetic is more general than the single-level constrained interval arithmetic because it does not have its intervals varying of dependent form in interval operations. Numerical examples have also been constructed and illustrate the method of solution. Finally, we study the discrete-time fuzzy interval optimal control prob... (Complete abstract click electronic access below) / Doutor

Identiferoai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000909849
Date January 2018
CreatorsCampos, José Renato
ContributorsUniversidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Ilha Solteira).
PublisherIlha Solteira,
Source SetsUniversidade Estadual Paulista
LanguagePortuguese
Detected LanguageEnglish
Typetext
Formatf.
RelationSistema requerido: Adobe Acrobat Reader

Page generated in 0.0027 seconds