Return to search

Design of high-speed adaptive parallel multi-level decision feedback equalizer

Multi-level decision feedback equalization (MDFE) is an effective technique to remove inter-symbol interference (ISI) from disk readback signals, which uses the simple architecture of decision feedback equalization. Parallelism which doubles the symbol rate can be realized by setting the first tap of the feedback filter to zero.
A mixed-signal implementation has been chosen for the parallel MDFE, in which coefficients for the 9-tap feedback filter are adapted in the digital domain by 10-bit up/ down counters; 6-bit current mode D/A converters are used to convert digital coefficients to differential current signals which are summed with the forward equalizer (FE) output, and a flash A/D is used to make decisions and generate error signals for adaptation.
In this thesis, a description of the parallel structure and the adaptation algorithm are presented with behavioral level verification. The circuit design and layout were carried out in HP 1.2um n-well CMOS process. The design of the high-speed counter and the current-mode D/A are discussed. HSPICE simulations show that a symbol rate of 100Mb/s for the feedback equalizer is readily achieved. / Graduation date: 1997

Identiferoai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/34362
Date26 February 1997
CreatorsXiang, Yihai
ContributorsAllstot, David J.
Source SetsOregon State University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0017 seconds