This work presents a dynamic model for utility-scale PV systems. The model is based on a centralized converter topology, which uses a voltage-sourced converter (VSC) to facilitate the exchange of energy between PV generators and the utility grid. The related control system regulates active and reactive power injected by the PV system, based on a current control strategy. Moreover, the model includes a Maximum Power Point Tracking (MPPT) scheme, implemented with the incremental conductance method. Dimensioning of the model is presented as well as simulation cases to validate its performance. Subsequently, the model was used to analyze the effect of variations in solar radiation on a test network with high penetration of photovoltaic generation. Results showed that without proper compensation of reactive power, variations in solar radiation can cause voltage fluctuations outside allowable limits. Thus, in order to mitigate these fluctuations, local control strategies were implemented to allow the exchange of reactive power between the solar farm and the utility grid. Simulations showed that the proposed strategies can mitigate voltage fluctuations at the point of common coupling, improving voltage regulation in the network. / Este trabalho apresenta um modelo dinâmico de sistemas fotovoltaicos de grande escala. O modelo é baseado em uma topologia de conversor centralizado, que usa um conversor de fonte de tensão (VSC) para facilitar a troca de energia entre os geradores fotovoltaicos e a rede elétrica. O sistema de controle relacionado regula a energia ativa e reativa injetada pelo sistema fotovoltaico, com base em uma estratégia de controle de corrente. Além disso, o modelo inclui um sistema de rastreamento de ponto de potência máxima (MPPT), implementado com o método da condutância incremental. O dimensionamento do modelo é apresentado, bem como vários casos de simulação para validar o seu desempenho. Posteriormente, o modelo foi utilizado para analisar o efeito das variações na radiação solar sobre uma rede de teste com uma elevada penetração de geração fotovoltaica. Os resultados mostraram que sem uma adequada compensação de energia reativa, as variações na radiação solar podem causar flutuações de tensão fora dos limites permitidos. Assim, a fim de mitigar estas flutuações, estratégias de controle local foram implementadas para permitir a troca de potência reativa entre os sistemas fotovoltaicos e a rede. As simulações mostraram que as estratégias propostas podem mitigar as flutuações de tensão no ponto de acoplamento comum, melhorando a regulação de tensão na rede.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-24032017-132931 |
Date | 13 May 2016 |
Creators | Montenegro, Cristian Fernando Torres |
Contributors | Monaro, Renato Machado, Salles, Maurício Barbosa de Camargo |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0021 seconds