In this work we study the stochastic optimal control problem of discrete-time linear systems subject to Markov jumps and multiplicative noises. We consider the multiperiod and finite time horizon optimization of a mean-variance cost function under a new criterion. In this new problem, we apply a constraint on the total output variance weighted by its risk parameter while maximizing the expected output. The optimal control law is obtained from a set of interconnected Riccati difference equations, extending previous results in the literature. The application of our results is exemplified by numerical simulations of a portfolio of stocks and a risk-free asset. / Neste trabalho, estudamos o problema do controle ótimo estocástico de sistemas lineares em tempo discreto sujeitos a saltos Markovianos e ruídos multiplicativos. Consideramos a otimização multiperíodo, com horizonte de tempo finito, de um funcional da média-variância sob um novo critério. Neste novo problema, maximizamos o valor esperado da saída do sistema ao mesmo tempo em que limitamos a sua variância total ponderada pelo seu parâmetro de risco. A lei de controle ótima é obtida através de um conjunto de equações de diferenças de Riccati interconectadas, estendendo resultados anteriores da literatura. São apresentadas simulações numéricas para uma carteira de investimentos com ações e um ativo de risco para exemplificarmos a aplicação de nossos resultados.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-17032017-100317 |
Date | 20 December 2016 |
Creators | Barbieri, Fabio |
Contributors | Costa, Oswaldo Luiz do Valle |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0027 seconds