Return to search

Effets thermomécaniques en usinage à sec : une modélisation analytique-numérique / Thermomechanical effects in dry machining : an analytical-numerical modeling

Lors d'une opération d'usinage, l'intégrité de la surface usinée et l’optimisation du procédé sont conditionnées par les paramètres de coupe (vitesses de coupe et d’avance, géométrie et matériau de l'outil...). Certaines conditions de coupe peuvent induire des effets indésirables tels que des vibrations importantes, des efforts de coupe excessifs et une usure prématurée de l'outil, conduisant à des qualités de surfaces médiocres. Dans l’industrie, l’utilisation d'approches empiriques pour opérer ce choix se révèle couteux et difficilement exploitable. Le développement d’outils de simulation basés sur des modèles prédictifs s’avère nécessaire. Ces modèles permettent de maitriser et de comprendre les phénomènes thermomécaniques aux interfaces outil-copeau et outil-pièce qui conditionnent l'intégrité de la surface usinée ainsi que la durée de vie de l'outil de coupe. L'objectif de la thèse est la modélisation des effets thermomécaniques en usinage avec des approches hybrides 'Analytique-c. Ceci permet d'analyser l'interaction entre les conditions de coupe du procédé d'usinage, le comportement du matériau et les conditions tribologiques aux interfaces outil-copeau et outil-pièce (contact collant-glissant, partage de la source de chaleur due au frottement). Le travail comporte également une validation expérimentale pour la coupe orthogonale à sec. Le modèle proposé est basé sur les développements suivants: (i) mise en place d'une 'Approche 1D par Tranche' pour la prise en compte de l'écoulement de la matière dans la zone primaire de cisaillement du copeau, (ii) modélisation du problème thermique transitoire non linéaire dans le système 'copeau-outil-pièce' en couplant une formulation EF de type Petrov-Galerkin avec la méthode de Newton-Raphson et une intégration implicite dans le temps, (iii) une nouvelle formulation de la distribution de pression le long de la face de coupe de l'outil, (iv) une nouvelle approche pour gérer le partage de la source de chaleur par friction à l'interface outil-copeau. La démarche proposée permet de mettre en place une modélisation thermomécanique de l'interaction outil-matière applicable aux procédés industriels comme le perçage très utilisé dans le domaine aéronautique. Comparée aux simulations basées sur la méthode des Éléments Finis, l'approche développée requiert un temps de calcul de l'ordre de quelques minutes avec une précision comparable / In dry machining, the thermomechanical process of chip formation, the tool wear and the surface integrity depend strongly on the tribological conditions along the tool rake face. Besides, the friction conditions at the tool-chip interface and along the round cutting edge are very complex. It should be noted that to understand the friction effects in machining, we have to analyse the inherent relationship among, the cutting conditions (cutting and feed velocities, tool geometry), the workpiece material behaviour, the thermomechanical characteristics of the tool material, the frictional heat partition in the sliding zone and the friction conditions at the tool-chip and tool-workpiece interfaces. Due to the problem complexity, it appears that despite many works on machining, the understanding of the effect of friction conditions requires further investigations. In the present work, to identify the interaction between the thermomechanical phenomena at the tool-chip interface and the material flow in the primary shear zone; an analytical model has been coupled with a finite element approach. For the tool rake face, a new pressure model was developed. The transient nonlinear thermal problem in the workpiece-tool-chip system has been solved by using a FE model based on the Petrov-Galerkin formulation. The coupling between the primary shear zone (PSZ) (chip formation), the secondary shear zone (SSZ) (sticking zone) and the frictional heat at the sliding zone has been taking into account. The model allows to determine in a fast and simple way several significant machining parameters as: (i) the cutting forces, (ii) the temperature distribution in the tool-chip-workpiece system, (iii) the heat flux from the PSZ to the workpiece, (iv) the tool-chip contact length, (v) the frictional heat partition and (vi) the apparent friction coefficient. The proposed model allows to analyze different industrial machining processes such as drilling and milling

Identiferoai:union.ndltd.org:theses.fr/2017LORR0112
Date18 May 2017
CreatorsAvevor, Yao Venunye
ContributorsUniversité de Lorraine, Moufki, Abdelhadi
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0035 seconds