Return to search

Human copper ion transfer : from metal chaperone to target transporter domain

Many processes in living systems occur through transient interactions among proteins. Those interactions are often weak and are driven by small changes in free energy. Due to the short-living nature of these interactions, our knowledge about driving forces, dynamics and structures of these types of protein-protein heterocomplexes are though limited. This is especially important for cellular copper (Cu) trafficking: Copper ions are essential for all eukaryotes and most bacteria. As a cofactor in many enzymes, copper is especially vital in respiration or detoxification. Since the same features that make copper useful also make it toxic, it needs to be controlled tightly. Additionally, in the reducing environment of the cytosol, Cu is present as insoluble Cu(I). To circumvent both toxicity and solubility issues, a system has evolved where copper is comforted by certain copper binding proteins, so-called Cu-chaperones. They transiently interact with each other to distribute the Cu atoms in a cell. In humans, one of them is Atox1. It binds copper with a binding site containing two thiol residues and transfers it to other binding sites, mostly those of a copper pump, ATP7B (also known as Wilsons disease protein). My work was aimed at understanding copper-mediated protein-protein interactions on a molecular and mechanistic level. Which amino acids interact with the metal? Which forces drive the transfer from one protein to the other? Using biophysical and biochemical methods such as chromatography and calorimetry on wild type and point-mutated proteins in vitro, we found that the copper is transferred via a dynamic intermediate complex that keeps the system flexible while shielding the copper against other interactions. Although similar transfer interactions can be observed in other organisms, and many conclusions in the copper field are drawn from bacterial and yeast analogs, we believe that it is important to investigate human proteins, too. Not only is their regulation different, but also only in humans we find the diseases linked to the proteins: Copper level regulation diseases are to be named first, but atypical copper levels have also been linked to tumors and amyloid dispositions. In summary, my observations and conclusions are of basic research character and can be of importance for both general copper and human medicinal research.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-100511
Date January 2015
CreatorsNiemiec, Moritz Sebastian
PublisherUmeå universitet, Kemiska institutionen, Umeå : Umeå Universitet
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds