• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 11
  • 9
  • 9
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Funktionelle Untersuchungen der Auswirkung von Mutationen auf das humane Kupfertransportprotein ATP7B (Wilson ATPase)

Kühne, Angelika 09 January 2013 (has links) (PDF)
Das Schwermetall Kupfer ist von essentieller Bedeutung für zahlreiche zelluläre Funktionen. Aufgrund seines Redoxpotentials muss die Kupferhomöostase im Organismus eng reguliert werden. Die Schlüsselrolle spielt dabei das Kupfertransportprotein ATP7B (Wilson ATPase) in der Leber. Ein Funktionsverlust dieses Proteins wird in der autosomal-rezessiv vererbten Erkrankung Morbus Wilson deutlich. Der Kupfertransportdefekt der Hepatozyten führt zu einer Kupferüberladung in der Leber mit nachfolgender Schädigung. Ferner kommt es zu einer Kupferakkumulation im Zentralnervensystem mit neurologischen Störungen. Das bei der Erkrankung betroffene Gen ATP7B wurde 1993 kloniert. Bis heute sind über 500 krankheitsverursachende Genmutationen entdeckt worden. Eine Schlüsselfunktion dieser Enzymgruppe ist die katalytische Phosphorylierung. Die Auswirkungen von Mutationen auf die Funktion des Proteins sind jedoch nur unzureichend verstanden. ATP7B kann mit Hilfe des Baculovirusexpressionssystems hergestellt und anschließend proteinbiochemischen Untersuchungen unterzogen werden. In dieser experimentellen Arbeit wurde untersucht, ob Punktmutationen diesen Phosphorylierungsmechanismus von ATP7B beeinflussen. Dafür wurden, neben dem Wildtyp-Protein, 25 patientenspezifische und eine noch nicht beim Menschen beobachtete Mutation der Phosphorylierungsstelle D1027A als Negativkontrolle generiert und die katalytische Aktivität in einem Phosphorylierungsassay untersucht. In der vorliegenden Arbeit wurde gezeigt, dass bestimmte Punktmutationen zum Funktionsverlust von ATP7B führen. Als weiterer Mechanismus der Mutationswirkung wurde, neben der Inaktivierung von ATP7B, die Hyperphosphorylierung entdeckt. Die biochemische Charakterisierung dieser Mutationen führt zu einem tieferen Verständnis in der Pathophysiologie des Morbus Wilson und ebnet den Weg für detaillierte Untersuchungen der Genotyp-Phänotyp-Korrelation sowie für innovative Diagnostik- und Therapiestrategien.
2

Genética molecular y biomarcadores de la enfermedad de Wilson

Sánchez Monteagudo, Ana 28 May 2023 (has links)
[ES] La enfermedad de Wilson (EW) es un trastorno hereditario del metabolismo del cobre causado por mutaciones en ATP7B, que codifica una proteína transportadora de cobre en el hígado. Su mal funcionamiento provoca un fallo en la excreción biliar de cobre y una acumulación progresiva de este metal en el organismo, especialmente en hígado y cerebro. En este trabajo, se explora la posible utilidad de miRNAs circulantes en plasma para identificar biomarcadores que sirvan para controlar la progresión de la enfermedad en pacientes con EW bajo tratamiento. Los modelos desarrollados para cada miRNA mostraron un buen rendimiento al clasificar a los pacientes con factores de evolución desfavorable, por lo que estos tres miRNAs se proponen como candidatos para mejorar el seguimiento clínico o para respaldar la eficacia de nuevas terapias en la EW. / [CA] La malaltia de Wilson és un trastorn hereditari del metabolisme del coure causat per mutacions en ATP7B, que codifica per a una proteïna transportadora del coure al fetge. El seu mal funcionament produeix alteracions en l'excreció biliar i l'acumulació progressiva de coure, especialment en fetge i cervell. Es va explorar la possible utilitat del perfil de miRNAs circulants com biomarcadors de progressió de la patologia hepàtica. L'avaluació dels models obtinguts per a cadascun dels tres miRNAs va mostrar un bon rendiment per a classificar al grup de pacients amb factors d’evolució desfavorable, en conseqüència, es proposen com a candidats per tal de millorar el seguiment clínic o comprovar l’efectivitat de noves teràpies en la malaltia de Wilson. / [EN] Wilson disease (WD) is an inherited disorder of copper metabolism caused by mutations in ATP7B, which encodes for a liver copper-transporting protein. Its dysfunction causes a deficit in biliary copper excretion and a progressive accumulation of this metal in the organism, mainly in liver and brain. In this work, circulating miRNAs profiling in plasma has been accomplished to identify biomarkers that could serve to monitor disease progression in WD patients under chelation therapy. Developed models for each miRNA exhibited good performance classifying patients with poor outcome factors, consequently, these three miRNAs are proposed as candidates to improve clinical follow-up or to support efficacy of novel therapies in WD. / Esta Tesis Doctoral ha sido financiada por los siguientes proyectos de investigación: “Avanzar en el diagnóstico y la prognosis de la enfermedad de Wilson” Duración: 2016-2019, Fundació Per Amor a l’Art (FPAA) IP: C. Espinós; “Bases genéticas y biomarcadores pronóstico de la enfermedad de Wilson y Wilson-like” 2020-2022, Fundació Per Amor a l’Art (FPAA) IP: C. Espinós; “Estudios clínicos, bases genéticas y biomarcadores pronóstico en enfermedades raras neurodegenerativas” 2019-2021, Instituto de Salud Carlos III (Expediente: PI18/00147) IP: C. Espinós; “De genes a terapia en enfermedades neurodegenerativas y neuromusculares” 2018-2021, Generalitat Valenciana, Programa Prometeo para grupos de investigación de excelencia (Expediente: PROMETEO/2018/135) Consorcio de investigadores formado por F. V. Pallardó (coordinador), J.M. Millán, I. Galindo, P. Sanz, T. Sevilla y C. Espinós. / Sánchez Monteagudo, A. (2021). Genética molecular y biomarcadores de la enfermedad de Wilson [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171454
3

Characterisation and expression of copper homeostasis genes in sea bream (Sparus aurata)

Minghetti, Matteo January 2009 (has links)
The redox properties of Copper (Cu) make it both an ideal cofactor for many enzymes, and, in its free form, a highly toxic molecule capable of stimulating production of reactive oxygen species or binding to protein thiol groups. Therefore, living organisms have evolved homeostatic systems to “handle” Cu avoiding dangerous and wasteful aspecific interactions. These systems comprise uptake, carrier, storage and excretion proteins. The importance of Cu-homeostatic systems was initially discovered in humans where alterations of Cu-excretory proteins were shown to be responsible for two lethal genetic disorders; the Wilson and Menkes diseases. The levels of bioavailable Cu in the aquatic environment is important because concentrations in oceanic waters tend to be minute, whilst in some fresh and coastal waters, particularly around areas of mineral extraction, viniculture and farming operations, concentrations can be excessive. In contrast to terrestrial vertebrates, fish are not only exposed to dietary sources of copper but are also exposed to dissolved ionic copper that may enter via the skin and gills. Indeed, the latter route is important in fish and it has been demonstrated in physiological studies that under conditions of dietary deficiency, fish can satisfy their own body requirements by uptake from water. Therefore, fish must have systems relating to both gill and gut to enable maintenance of body homeostasis of this essential, yet toxic, metal. In an attempt to understand the mechanisms of Cu homeostasis in fish, whether under conditions of deficiency, adequacy or excess, it is essential to consider the expression of known Cu-homeostasis proteins. Thus, cDNAs for sea bream (Sparus aurata) homologues of copper transporter 1 (Ctr1), antioxidant protein 1 (Atox1), Menkes protein (ATP7A), Wilson protein (ATP7B), and metallothionein (MT), which are responsible for the uptake, delivery to the secretory pathway and scavenging of intracellular Cu, were cloned and their mRNA tissue expression levels measured. To investigate the molecular basis of the different homeostatic and toxic responses to waterborne or dietary Cu, sea bream were exposed to sub-toxic levels of Cu in the diet (130 mg/Kg of dry diet) or water (0.3 mg/L) and tissue mRNA and Cu levels were measured. Moreover, to discriminate between the effect of different metals on the transcriptional regulation of Cu homeostasis genes in fish, Sparus aurata fibroblast (SAF1) cells were exposed to sub-toxic levels of Cu (25 μM), Zn (100 μM) and Cd (10 μM). In addition, a microarray was used to gain a broader overview of the transcriptional response of SAF1 cells to Cu (25 μM). Waterborne or dietary Cu resulted in distinct expression profiles of Cu-homeostasis genes and markers of oxidative stress. After dietary exposure, Cu increased in intestine and liver, whilst after waterborne exposure Cu increased in gill and liver. Exposure to dietary Cu resulted in decreases in Ctr1 and ATP7A mRNA in both liver and intestine. Renal Ctr1 levels remained unchanged, whilst ATP7A mRNA decreased. In contrast, waterborne Cu exposure increased intestinal Ctr1 and ATP7A mRNA, and increased renal Ctr1 and decreased renal ATP7A mRNA. Both dietary and waterborne Cu increased ATP7B mRNA in liver. Metallothionein (MT) mRNA increased in liver and gill after waterborne Cu. Glutathione reductase (GR), a marker of oxidative stress, increased expression in liver and gill after waterborne Cu exposure, but decreased in intestine. Thus, exposure to Cu via water or diet has different, often opposite effects on Cu-homeostasis genes. The decrease in expression of both Cu-transport genes in intestine after dietary exposure may indicate a defensive mechanism to limit uptake of Cu. The opposite effects in intestine after waterborne exposure are more difficult to explain, but again may reflect a defence mechanism against excess bloodborne Cu coming from the gill. Since both dietary and waterborne Cu increased Cu levels in liver and increased hepatic ATP7B it is likely that well-characterised mammalian route of Cu excretion to bile is active in sea bream. However, only hepatic Cu derived from gill increased the expression of the stress markers MT and GR. This suggests that Cu is delivered to liver in a different form from gill as that from intestine, the intestinally derived pool being less toxic. Thus the increase in copper transport gene expression in intestine after gill exposure might be a mechanism to enable incorporation of excess bloodborne Cu into the intestinal pathway of Cu delivery to liver, thus minimizing toxicity. The in vitro exposure of SAF1 cells to Cu showed a similar response to liver of fish exposed to waterborne Cu indicating similar Cu availability and complexation. ATP7A mRNA levels were induced by Cu but not by Zn or Cd suggesting Cu-specific regulation. Conversely, MT and GR were induced by all metals tested. The transcriptomic analysis highlighted that the biological processes most significantly affected by Cu were secretion, protein trafficking and stress. Overall, these results show that in fish copper has distinct effects on tissue Cu transporter genes and oxidative stress depending on whether it is taken up via the gill or gut and that intestinal absorption may be required for normal uptake and metabolism of Cu, regardless of the route of uptake. Moreover, changes in mRNA levels indicate that Cu homeostasis genes, at least in fish, may be regulated at the transcriptional level. Although more work needs to be done to identify genes that are robust predictors of Cu toxicity, the microarray results presented here show a clear transcriptional fingerprint which may characterize Cu toxicity in fish.
4

Genetic Analysis of Wilson Disease in a South Indian Population and Molecular Characterization of 13 Novel ATP7B Mutations

Singh, Nivedita January 2017 (has links)
Wilson disease (WD) is an autosomal recessive disorder characterized by deposition of copper in the body, mainly in the liver and brain. WD patients present with hepatic, neurological, and psychiatric problems. The diagnosis of WD is very challenging, and is performed by taking into account both clinical and biochemical parameters. The treatment of WD exists, which aims at initial chelation therapy followed by maintenance therapy. WD is caused by mutations in the ATP7B gene. Till date, more than 600 mutations in ATP7B have already been described from many countries, including India. However, there are a very few large cohort studies which are reported from Indian population. In this study, we have attempted to perform mutation analysis of ATP7B in a large cohort of WD families from Bangalore, south India, and further look into the molecular consequences of the novel mutations identified in the present study.
5

Funktionelle Untersuchungen der Auswirkung von Mutationen auf das humane Kupfertransportprotein ATP7B (Wilson ATPase)

Kühne, Angelika 29 November 2012 (has links)
Das Schwermetall Kupfer ist von essentieller Bedeutung für zahlreiche zelluläre Funktionen. Aufgrund seines Redoxpotentials muss die Kupferhomöostase im Organismus eng reguliert werden. Die Schlüsselrolle spielt dabei das Kupfertransportprotein ATP7B (Wilson ATPase) in der Leber. Ein Funktionsverlust dieses Proteins wird in der autosomal-rezessiv vererbten Erkrankung Morbus Wilson deutlich. Der Kupfertransportdefekt der Hepatozyten führt zu einer Kupferüberladung in der Leber mit nachfolgender Schädigung. Ferner kommt es zu einer Kupferakkumulation im Zentralnervensystem mit neurologischen Störungen. Das bei der Erkrankung betroffene Gen ATP7B wurde 1993 kloniert. Bis heute sind über 500 krankheitsverursachende Genmutationen entdeckt worden. Eine Schlüsselfunktion dieser Enzymgruppe ist die katalytische Phosphorylierung. Die Auswirkungen von Mutationen auf die Funktion des Proteins sind jedoch nur unzureichend verstanden. ATP7B kann mit Hilfe des Baculovirusexpressionssystems hergestellt und anschließend proteinbiochemischen Untersuchungen unterzogen werden. In dieser experimentellen Arbeit wurde untersucht, ob Punktmutationen diesen Phosphorylierungsmechanismus von ATP7B beeinflussen. Dafür wurden, neben dem Wildtyp-Protein, 25 patientenspezifische und eine noch nicht beim Menschen beobachtete Mutation der Phosphorylierungsstelle D1027A als Negativkontrolle generiert und die katalytische Aktivität in einem Phosphorylierungsassay untersucht. In der vorliegenden Arbeit wurde gezeigt, dass bestimmte Punktmutationen zum Funktionsverlust von ATP7B führen. Als weiterer Mechanismus der Mutationswirkung wurde, neben der Inaktivierung von ATP7B, die Hyperphosphorylierung entdeckt. Die biochemische Charakterisierung dieser Mutationen führt zu einem tieferen Verständnis in der Pathophysiologie des Morbus Wilson und ebnet den Weg für detaillierte Untersuchungen der Genotyp-Phänotyp-Korrelation sowie für innovative Diagnostik- und Therapiestrategien.
6

Human copper ion transfer : from metal chaperone to target transporter domain

Niemiec, Moritz Sebastian January 2015 (has links)
Many processes in living systems occur through transient interactions among proteins. Those interactions are often weak and are driven by small changes in free energy. Due to the short-living nature of these interactions, our knowledge about driving forces, dynamics and structures of these types of protein-protein heterocomplexes are though limited. This is especially important for cellular copper (Cu) trafficking: Copper ions are essential for all eukaryotes and most bacteria. As a cofactor in many enzymes, copper is especially vital in respiration or detoxification. Since the same features that make copper useful also make it toxic, it needs to be controlled tightly. Additionally, in the reducing environment of the cytosol, Cu is present as insoluble Cu(I). To circumvent both toxicity and solubility issues, a system has evolved where copper is comforted by certain copper binding proteins, so-called Cu-chaperones. They transiently interact with each other to distribute the Cu atoms in a cell. In humans, one of them is Atox1. It binds copper with a binding site containing two thiol residues and transfers it to other binding sites, mostly those of a copper pump, ATP7B (also known as Wilsons disease protein). My work was aimed at understanding copper-mediated protein-protein interactions on a molecular and mechanistic level. Which amino acids interact with the metal? Which forces drive the transfer from one protein to the other? Using biophysical and biochemical methods such as chromatography and calorimetry on wild type and point-mutated proteins in vitro, we found that the copper is transferred via a dynamic intermediate complex that keeps the system flexible while shielding the copper against other interactions. Although similar transfer interactions can be observed in other organisms, and many conclusions in the copper field are drawn from bacterial and yeast analogs, we believe that it is important to investigate human proteins, too. Not only is their regulation different, but also only in humans we find the diseases linked to the proteins: Copper level regulation diseases are to be named first, but atypical copper levels have also been linked to tumors and amyloid dispositions. In summary, my observations and conclusions are of basic research character and can be of importance for both general copper and human medicinal research.
7

Structural and Functional Studies of ATP7B, the Copper(I)-transporting P-type ATPase Implicated in Wilson Disease

Fatemi, Negah 06 January 2012 (has links)
Copper is an integral component of key metabolic enzymes. Numerous physiological processes depend on a fine balance between the biosynthetic incorporation of copper into proteins and the export of excess copper from the cell. The homeostatic control of copper requires the activity of the copper transporting ATPases (Cu-ATPases). In Wilson disease the disruption in the function of the Cu-ATPase ATP7B results in the accumulation of excess copper and a marked deficiency of copper-dependent enzymes. In this work, the structure of ATP7B has been modeled by homology using the Ca-ATPase X-ray structure, enabling a mechanism of copper transport by ATP7B to be proposed. The fourth transmembrane helix (TM4) of Ca-ATPase contains conserved residues critical to cation binding and is predicted to correspond to TM6 of the ATP7B homology model, containing the highly conserved CXXCPC motif. The interaction with Cu(I) and the importance of the 3 cysteines in TM6 of ATP7B has been shown using model peptides. ATP7B has a large cytoplasmic N-terminus comprised of six copper-binding domains (WCBD1-6), each capable of binding one Cu(I). Protein-protein interactions between WCBDs and the copper chaperone Atox1 has been shown, contrary to previous reports, to occur even in the absence of copper. 15N relaxation measurements on the apo and Cu(I)-bound WCBD4-6 show that there is minimal change in the dynamic properties and the relative orientation of the domains in the two states. The domain 4-5 linker remains flexible, and domain 5-6 is not a rigid dimer, with flexibility between the domains. Copper transfer to and between WCBD1-6 likely occurs via protein interactions facilitated by the flexibility of the domains with respect to each other. The flexible linkers connecting the domains are important in giving the domains motional freedom to interact with Atox1, to transfer copper to other domains, and finally to transfer copper to the transmembrane site for transport across the membrane.
8

Structural and Functional Studies of ATP7B, the Copper(I)-transporting P-type ATPase Implicated in Wilson Disease

Fatemi, Negah 06 January 2012 (has links)
Copper is an integral component of key metabolic enzymes. Numerous physiological processes depend on a fine balance between the biosynthetic incorporation of copper into proteins and the export of excess copper from the cell. The homeostatic control of copper requires the activity of the copper transporting ATPases (Cu-ATPases). In Wilson disease the disruption in the function of the Cu-ATPase ATP7B results in the accumulation of excess copper and a marked deficiency of copper-dependent enzymes. In this work, the structure of ATP7B has been modeled by homology using the Ca-ATPase X-ray structure, enabling a mechanism of copper transport by ATP7B to be proposed. The fourth transmembrane helix (TM4) of Ca-ATPase contains conserved residues critical to cation binding and is predicted to correspond to TM6 of the ATP7B homology model, containing the highly conserved CXXCPC motif. The interaction with Cu(I) and the importance of the 3 cysteines in TM6 of ATP7B has been shown using model peptides. ATP7B has a large cytoplasmic N-terminus comprised of six copper-binding domains (WCBD1-6), each capable of binding one Cu(I). Protein-protein interactions between WCBDs and the copper chaperone Atox1 has been shown, contrary to previous reports, to occur even in the absence of copper. 15N relaxation measurements on the apo and Cu(I)-bound WCBD4-6 show that there is minimal change in the dynamic properties and the relative orientation of the domains in the two states. The domain 4-5 linker remains flexible, and domain 5-6 is not a rigid dimer, with flexibility between the domains. Copper transfer to and between WCBD1-6 likely occurs via protein interactions facilitated by the flexibility of the domains with respect to each other. The flexible linkers connecting the domains are important in giving the domains motional freedom to interact with Atox1, to transfer copper to other domains, and finally to transfer copper to the transmembrane site for transport across the membrane.
9

La transplantation d’hépatocytes chez le rat Long Evans Cinnamon, modèle animal de la maladie de Wilson

Vo, Kim 11 1900 (has links)
La maladie de Wilson est une maladie héréditaire due à un déficit du transporteur du cuivre, l’ATP7B. Cette maladie se présente sous forme d’insuffisance hépatique aiguë ou chronique, pour lesquels le traitement médical actuel consiste en l’administration d’agents chélateurs, ce qui ne résulte cependant pas en une guérison complète de la maladie. La transplantation orthotopique du foie est le seul traitement définitif actuellement, avec tous les désavantages qu’elle comporte. Un traitement alternatif à cette option est donc souhaitable. Cette étude porte sur la faisabilité de la transplantation d’hépatocytes chez le modèle animal de la maladie de Wilson, le rat Long Evans Cinnamon (LEC), avec pour buts d’en déterminer la sécurité et l’efficacité tant sur le plan clinique (amélioration de la survie, prévention de l’hépatite) que pathologique. Douze rats LEC ont reçu une injection intrasplénique de 2,6 x 105 – 3,6 x 107 hépatocytes prélevés chez des rats donneurs de souche LE. Ils ont été suivis durant 6 mois puis sacrifiés. Ils ont ensuite été comparés à un groupe contrôle de douze autres rats LEC. Aucune différence significative n’a été notée au niveau du poids, du bilan hépatique et des concentrations de cuivre biliaire et hépatique. Cependant, une amélioration de l’activité oxydase de la céruloplasmine post-transplantation a été démontrée chez le groupe de rats transplantés (49,6 ± 31,5 versus 8,9 ± 11,7). Les rats transplantés ont aussi eu une amélioration sur tous les critères histologiques étudiés. Enfin, l’ARNm de l’atp7b a été retrouvé chez 58% des rats transplantés avec un taux d’expression de 11,9% ± 13,6 par rapport à un rat LE normal. L’immunohistochimie a quant à elle démontré la présence de l’atp7b chez tous les rats transplantés. Les résultats obtenus sont considérés favorables à ce traitement alternatif, et indiquent que la transplantation d’hépatocytes est une technique sécuritaire qui peut contribuer à renverser le processus pathologique en cours dans la maladie de Wilson. / Wilson’s disease (WD) is a hereditary metabolic disease caused by a deficiency of copper-transporting ATP7B, resulting in copper accumulating to toxic levels in the liver. Its manifestations range from acute or chronic hepatic insufficiency to fulminant liver failure. The mainstay of therapy is the use of chelating agents. However selected patients may also require orthotopic liver transplantation (OTL), an invasive and complex procedure with life-long implications. Hepatocyte transplantation is an appealing alternative to OLT. Its safety and efficacy were evaluated in the animal model of WD, the Long Evans Cinnamon (LEC) rat. Twelve LEC rats received an intrasplenic injection of 2,6 x 105 – 3,6 x 107 hepatocytes obtained from LE donor rats. They were followed for 6 months before sacrifice. They were then compared to a control group of twelve rats. No difference was found when comparing their weights, biochemical parameters such as liver function tests and bilirubin, as well as their biliary and hepatic copper concentrations. However, the ceruloplasmin oxydase activity was improved in the transplanted rats (49,6 ± 31,5 versus 8,9 ± 11,7). After sacrifice, histologic evaluation and demonstration of atp7b mRNA in the recipient liver were performed. There was evidence of histological improvement and atp7b mRNA was found in 58% of transplanted rats with an expression of 11,9% ± 13,6 when compared to a normal LE rat. Evidence of successful engraftment of the transplanted cells was found in every transplanted rat using the technique of immunohistochemistry. These encouraging results are in accordance with previous studies on hepatocyte transplantation in the LEC rat. Its application to the human clinical setting is the next step, as it has already been tried in other metabolic liver diseases.
10

La transplantation d’hépatocytes chez le rat Long Evans Cinnamon, modèle animal de la maladie de Wilson

Vo, Kim 11 1900 (has links)
La maladie de Wilson est une maladie héréditaire due à un déficit du transporteur du cuivre, l’ATP7B. Cette maladie se présente sous forme d’insuffisance hépatique aiguë ou chronique, pour lesquels le traitement médical actuel consiste en l’administration d’agents chélateurs, ce qui ne résulte cependant pas en une guérison complète de la maladie. La transplantation orthotopique du foie est le seul traitement définitif actuellement, avec tous les désavantages qu’elle comporte. Un traitement alternatif à cette option est donc souhaitable. Cette étude porte sur la faisabilité de la transplantation d’hépatocytes chez le modèle animal de la maladie de Wilson, le rat Long Evans Cinnamon (LEC), avec pour buts d’en déterminer la sécurité et l’efficacité tant sur le plan clinique (amélioration de la survie, prévention de l’hépatite) que pathologique. Douze rats LEC ont reçu une injection intrasplénique de 2,6 x 105 – 3,6 x 107 hépatocytes prélevés chez des rats donneurs de souche LE. Ils ont été suivis durant 6 mois puis sacrifiés. Ils ont ensuite été comparés à un groupe contrôle de douze autres rats LEC. Aucune différence significative n’a été notée au niveau du poids, du bilan hépatique et des concentrations de cuivre biliaire et hépatique. Cependant, une amélioration de l’activité oxydase de la céruloplasmine post-transplantation a été démontrée chez le groupe de rats transplantés (49,6 ± 31,5 versus 8,9 ± 11,7). Les rats transplantés ont aussi eu une amélioration sur tous les critères histologiques étudiés. Enfin, l’ARNm de l’atp7b a été retrouvé chez 58% des rats transplantés avec un taux d’expression de 11,9% ± 13,6 par rapport à un rat LE normal. L’immunohistochimie a quant à elle démontré la présence de l’atp7b chez tous les rats transplantés. Les résultats obtenus sont considérés favorables à ce traitement alternatif, et indiquent que la transplantation d’hépatocytes est une technique sécuritaire qui peut contribuer à renverser le processus pathologique en cours dans la maladie de Wilson. / Wilson’s disease (WD) is a hereditary metabolic disease caused by a deficiency of copper-transporting ATP7B, resulting in copper accumulating to toxic levels in the liver. Its manifestations range from acute or chronic hepatic insufficiency to fulminant liver failure. The mainstay of therapy is the use of chelating agents. However selected patients may also require orthotopic liver transplantation (OTL), an invasive and complex procedure with life-long implications. Hepatocyte transplantation is an appealing alternative to OLT. Its safety and efficacy were evaluated in the animal model of WD, the Long Evans Cinnamon (LEC) rat. Twelve LEC rats received an intrasplenic injection of 2,6 x 105 – 3,6 x 107 hepatocytes obtained from LE donor rats. They were followed for 6 months before sacrifice. They were then compared to a control group of twelve rats. No difference was found when comparing their weights, biochemical parameters such as liver function tests and bilirubin, as well as their biliary and hepatic copper concentrations. However, the ceruloplasmin oxydase activity was improved in the transplanted rats (49,6 ± 31,5 versus 8,9 ± 11,7). After sacrifice, histologic evaluation and demonstration of atp7b mRNA in the recipient liver were performed. There was evidence of histological improvement and atp7b mRNA was found in 58% of transplanted rats with an expression of 11,9% ± 13,6 when compared to a normal LE rat. Evidence of successful engraftment of the transplanted cells was found in every transplanted rat using the technique of immunohistochemistry. These encouraging results are in accordance with previous studies on hepatocyte transplantation in the LEC rat. Its application to the human clinical setting is the next step, as it has already been tried in other metabolic liver diseases.

Page generated in 0.4159 seconds