Return to search

Growth of carbon nanotubes on different types of substrates. / 碳納米管在不同類型基底上的生長 / CUHK electronic theses & dissertations collection / Growth of carbon nanotubes on different types of substrates. / Tan na mi guan zai bu ytong lei xing ji di shang de sheng chang

Apart from being a support, the three substrates had their own roles in the growth of CNTs. Bamboo charcoal also acted as a catalyst provider. Au-coated silicon wafer participated in the formation of the silica/CNT composite nanowires. Copper foil itself was a catalyst. The silicate, the Au/Si droplet, and the copper particles were the catalysts for the growth of CNTs in these three substrates, respectively. The formation of the CNTs followed the vapor-liquid-solid (VLS) route which involved the decomposition of ethanol vapor into carbon, carbon dissolution inside the liquid catalyst and precipitation to form CNTs. / CNTs could be grown in a very wide temperature range (700-1400°C), but specific substrate for a particular temperature range was needed. The structures of the CNTs varied with the CVD processing conditions. The forms and the amount of catalytic material entering the interior of the CNTs depended on the characteristics of the catalyst for that process / The products formed on different substrates had their own characteristic features . Hollow or silicate filled CNTs with silicate droplet tips were formed on the surface of bamboo charcoal. Their diameter was in hundreds of nanometers and the length was about several microns. CNT-coated silica core-shell structures were obtained on Au-coated silicon wafer. The graphitic carbon shell was formed in thickness about 145 nm for the sample prepared at 1185°C, but amorphous carbon shell was produced in thickness more than 300 nm for the sample prepared at 1236°e. Lastly, CNTs with bamboo-like structure were synthesized on the copper foil substrate. The CNTs were getting thicker from 70 nm to 170 nm when temperature was increased from 700°C to 1000°C. The yield increased with temperature and annealing time if the sample was annealed for less than 30 min. / We report the growth of carbon nanotubes (CNTs) on different types of substrates with or without catalytic materials by using different approaches. The roles of the substrates and the catalysts in the formation of the CNTs are studied . We also characterized and identified the structural properties of the CNTs products. In this work, three types of substrates had been used, namely biomorphic bamboo charcoal , Au-coated silicon wafer, and copper foil. The CNTs were grown on different substrates by chemical vapor deposition (CVD) method at temperature range between 700°C and 1400°C. Ethanol vapor was used as the carbon source, while tetraethyl orthosilicate (TEOS) vapor was also applied to the process for bamboo charcoal. / Zhu, Jiangtao = 碳納米管在不同類型基底上的生長 / 朱江濤. / Adviser: D. H. L. Ng. / Source: Dissertation Abstracts International, Volume: 72-11, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Zhu, Jiangtao = Tan na mi guan zai bu tong lei xing ji di shang de sheng chang / Zhu Jiangtao.

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_344584
Date January 2009
ContributorsZhu, Jiangtao., Chinese University of Hong Kong Graduate School. Division of Materials Science and Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, theses
Formatelectronic resource, microform, microfiche, 1 online resource (xix, 120 leaves : ill.)
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0023 seconds