Cette thèse contribue à l'analyse de durées de vie bivarices. Elle s'appuie sur quatre articles, rédigés en collaboration avec Christian Genest (directeur), Thierry Duchesne (codirecteur) ou d'autres collaborateurs (Lajmi Lakhal-Chaieb, Bruno Rémillard, Louis-Paul Rivest). Le premier article, soumis à Insurance : Mathematics and Economies en novembre dernier, propose deux nouveaux tests d'adéquation d'un modèle de copules pour une paire (X, Y) de durées de vie. Leur performance est comparée à celle de six tests omnibus par voie de simulation. Le second article, à paraître dans Computational Statistics and Data Analysis, propose de nouveaux estimateurs du tau de Kendall entre les variables X et, Y, lorsque seule la seconde est sujette à censure. Une étude de Monte-Carlo montre que parce qu'ils exploitent l'information conditionnelle entre les variables, ces nouveaux estimateurs sont plus performants que ceux couramment utilisés dans ce contexte. Le troisième article, en cours de révision pour Lifetime Data Analysis, propose un estimateur de type Horvitz Thompson pour T(X,Y) lorsque les deux variables sont sujettes à censure. On démontre qu'au contraire des estimateurs existants, celui-ci demeure convergent même quand r / 0. Le quatrième article, soumis à Statistics in Medicine, présente un critère de sélection de modèle lorsque la paire (X, Y) n'est observable que dans la région Y > X et que Y est sujette à censure à droite, La procédure compare une estimation paramétrique à une estimation non paramétrique de la version tronquée du tau de Kendall. / This thesis contributes to bivariate survival data analysis. It is based on four papers, written jointly with Christian Genest (supervisor), Thierry Duchesne (co-supervisor) or other collaborators (Lajrni Lakhal-Chaieb, Bruno Rémillard, Louis-Paul Rivest). The first paper, submitted to Insurance : Mathematics and Economies last November, proposes two new statistics for goodness-of-fit testing of a copula model for a pair (X, Y) of lifetimes. Their performance is compared to that of six omnibus tests through simulation. The second paper, which is due to appear in Computational Statistics and Data Analysis, proposes new estimators of Kendall's tau between variables X and Y when only the second is subject to censoring. A Monte Carlo study shows that because tliey take into account the conditional information between the variables, thèse new estimators perforai better than those currently used in this context. The third paper, currently under revision for Lifetirne Data Analysis, proposes a Horvitz Thompson type estimator for T(X, Y) when both variables are subject to censoring. It is shown that by opposition to existing estimators, this one remains consistent even when r/() . The fourth paper, submitted to Statistics in Medicine, présents a model sélection criterion when the pair (X, Y) can only be observed in the région Y > X and Y is subject to right censoring. The procédure compares a parametric estimate to a nonparametric estimate of the fruneafed version of Kendall's tau.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/19174 |
Date | 12 April 2018 |
Creators | Beaudoin, David |
Contributors | Duchesne, Thierry, Genest, Christian |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | xv, 168 f., application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0029 seconds