Return to search

Biocompatible plasmonic nanostructures for bio-imaging applications and novel functional plasmonic materials

Our work addresses a novel biocompatible plasmon-enhanced nanostructure approach based on the combination of metal nanoparticles, light emitting polymer-based nanostructures, and scalable cellulose nanofiber templates via a one-step facile electrospinning process that can easily be applied to biomedical devices. In collaboration with the Team of Prof. Lee Goldstein in the Boston University medical campus, we demonstrated light emission from small-size (below 200nm) polymer nanoparticles coupled to plasmonic nanoparticles and to light-emitting biocompatible molecules. In order to fully demonstrate the potential of our novel plasmonic nanostructures we developed Magnetic resonance imaging (MRI) reagent doped Polycaprolactone (Core)-Polyethylene glycol (shell) core-shell nanoparticles and studied their size distribution and dispersion properties in a phosphate buffered saline solution. Our materials were optimized in order to obtain no aggregation of the nanoparticles in solution. The presence of MRI reagent in nanoparticles were demonstrated via Inversion Recovery Sequences (IR) by characterizing the different T1 relaxation times. The concentration of Gd in the nanoparticles dispersion was estimated with different dilution of Gd commercial reagent as a reference.
In addition, we combined facile electrospinning fabrication with top down nano-deposition and demonstrated a novel and scalable plasmonic resonant medium for rapid and reliable Raman scattering sensing of molecular monolayers and bacteria. Specifically, aided by PCA multivariate data analysis techniques, we demonstrated fingerprinting Surface Enhanced Raman Scattering (SERS) spectra of different bacteria strains (E. Coli K12, E. coli BL21 (DE3) and E. coli DH 5α) entrapped in our novel plasmonic networks.
Finally, in this thesis we have also addressed the development of novel, Si-compatible and largely tunable plasmonic materials for biosensing applications in the mid-infrared spectral range and developed a novel type of transparent conductive oxide based on the Indium Silicon Oxide (ISO) material (Indium Silicon Oxide) that features enhanced surface smoothness and thermal stability compared to Indium tin oxide (ITO) and Titanium nitride (TiN) alternative plasmonic materials. In collaboration with our collaborators at Columbia University, we demonstrated the tunability of near-field plasmonic resonances from 1.8 to 5.0 μm as a function of different annealing temperature. This work provides an enabling first-step towards the development of novel Si-compatible materials with tunable plasmon resonances for metamaterials and sensing devices that operate across the infrared spectrum. / 2019-07-02T00:00:00Z

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/30727
Date03 July 2018
CreatorsZhang, Ran
ContributorsDal Negro, Luca
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0018 seconds