Wu Min. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 87-114). / Abstracts in English and Chinese. / Declaration --- p.i / Acknowledgement --- p.ii / Publication list --- p.iii / Abstract (English) --- p.xi / Abstract (Chinese) --- p.xiv / Abbreviations --- p.xvi / List of figures / tables --- p.xviii / Chapter Chapter 1. --- General Introduction --- p.1 / Chapter 1.1 --- Endothelial function in the regulation of vascular tone --- p.1 / Chapter 1.1.1 --- NO --- p.2 / Chapter 1.1.2 --- PGI2 --- p.5 / Chapter 1.1.3 --- EDHF --- p.6 / Chapter 1.2 --- Alteration of endothelial functions after preservation with cardioplegia /organ preservation solutions in the coronary and pulmonary microcirculations --- p.18 / Chapter 1.2.1 --- Cardioplegia/organ preservation solutions --- p.21 / Chapter 1.2.2 --- Effect of Cardioplegia/organ preservation solutions on endothelial function --- p.22 / Chapter 1.2.2.1 --- Effect of K+ on endothelial function --- p.23 / Chapter 1.2.2.2 --- Effect of other components on endothelial function --- p.24 / Chapter Chapter 2. --- Materials and Methods --- p.26 / Chapter 2.1 --- Isometric force study in coronary/pulmonary resistance arteries --- p.26 / Chapter 2.1.1 --- Preparation of vessels --- p.26 / Chapter 2.1.1.1 --- Preparation of porcine coronary small arteries --- p.26 / Chapter 2.1.1.2 --- Preparation of porcine pulmonary small arteries --- p.26 / Chapter 2.1.2 --- Technique of setting up --- p.29 / Chapter 2.1.2.1 --- Mounting of small vessels --- p.29 / Chapter 2.1.2.2 --- Normalization procedure for small vessels --- p.29 / Chapter 2.1.3 --- EDHF-mediated vasorelaxation --- p.30 / Chapter 2.1.3.1 --- Precontraction and stimuli of EDHF --- p.30 / Chapter 2.1.3.2 --- """True"" response of EDHF" --- p.31 / Chapter 2.1.4 --- Data acquisition and analysis --- p.32 / Chapter 2.2 --- Electrophysiological study --- p.32 / Chapter 2.2.1 --- Preparation of small porcine coronary/pulmonary arteries --- p.32 / Chapter 2.2.2 --- Preparation of microelectrode --- p.32 / Chapter 2.2.3 --- Impaling of microelectrode --- p.33 / Chapter 2.2.4 --- Recording of membrane potential --- p.33 / Chapter 2.3 --- Statistical analysis --- p.34 / Chapter 2.4 --- Chemicals --- p.34 / Chapter Chapter 3. --- Effects of Celsior Solution on Endothelial Function in Resistance Coronary Arteries Compared to St. Thomas' Hospital Solution --- p.37 / Chapter 3.1 --- Abstract --- p.37 / Chapter 3.2 --- Introduction --- p.38 / Chapter 3.3 --- Experimental design and analysis --- p.40 / Chapter 3.3.1 --- Vessel preparation --- p.40 / Chapter 3.3.2 --- Normalization --- p.40 / Chapter 3:3.3 --- "Relaxation study: BK-induced, EDHF-mediated relaxation" --- p.41 / Chapter 3.3.4 --- Cellular electrophysiological study: EDHF-mediated cellular hyperpolarization and associated relaxation --- p.41 / Chapter 3.3.5 --- Data analysis --- p.42 / Chapter 3.4 --- Results --- p.43 / Chapter 3.4.1 --- Relaxation study --- p.43 / Chapter 3.4.1.1 --- Resting force --- p.43 / Chapter 3.4.1.2 --- U46619-induced precontraction --- p.43 / Chapter 3.4.1.3 --- EDHF-mediated relaxation --- p.43 / Chapter 3.4.2 --- Electrophysiological studies --- p.44 / Chapter 3.4.2.1 --- Resting membrane potential --- p.44 / Chapter 3.4.2.2 --- EDHF-mediated cellular hyperpolarization --- p.45 / Chapter 3.4.2.3 --- Cellular hyperpolarization-associated relaxation --- p.45 / Chapter 3.5 --- Discussion --- p.46 / Chapter 3.5.1 --- Effects of Celsior solution on endothelial function --- p.47 / Chapter 3.5.2 --- Effects of ST solution on EDHF-mediated function --- p.48 / Chapter 3.5.3 --- Comparison between Celsior and ST solutions on EDHF-mediated function --- p.48 / Chapter 3.5.4 --- Clinical implications --- p.49 / Chapter Chapter 4. --- Effects of Perfadex and Celsior Solution on Endothelial Function in Resistance Pulmonary Arteries --- p.57 / Chapter 4.1 --- Abstract --- p.57 / Chapter 4.2 --- Introduction --- p.58 / Chapter 4.3 --- Experimental design and analysis --- p.59 / Chapter 4.3.1 --- Vessel Preparation --- p.59 / Chapter 4.3.2 --- Normalization --- p.60 / Chapter 4.3.3 --- Isometric force study --- p.60 / Chapter 4.3.4 --- Electrophysiological studies --- p.61 / Chapter 4.3.5 --- Data analysis --- p.61 / Chapter 4.4 --- Results --- p.62 / Chapter 4.4.1 --- Relaxation study: EDHF-mediated relaxation --- p.62 / Chapter 4.4.1.1 --- Resting force --- p.62 / Chapter 4.4.1.2 --- U46619-induced precontraction --- p.62 / Chapter 4.4.1.3 --- EDHF-mediated relaxation --- p.62 / Chapter 4.4.2 --- Electrophysiological studies --- p.63 / Chapter 4.4.2.1 --- Resting membrane potential --- p.63 / Chapter 4.4.2.2 --- EDHF-mediated cellular hyperpolarization --- p.64 / Chapter 4.4.2.3 --- Cellular hyperpolarization-associated relaxation --- p.64 / Chapter 4.5 --- Discussion --- p.65 / Chapter 4.5.1 --- Effects of Celsior solution on endothelial function during cardiopulmonary surgery --- p.65 / Chapter 4.5.2 --- Effects of Perfadex solution on EDHF-mediated endothelial function --- p.66 / Chapter 4.5.3 --- Comparison between Celsior and Perfadex solutions on EDHF-mediated function --- p.66 / Chapter 4.5.4 --- Clinical implications --- p.67 / Chapter Chapter 5. --- Exploration of the Nature of EDHF - the Effect of H2O2 on the Membrane Potential in the Rat Small Mesenteric Arteries --- p.73 / Chapter Chapter 6. --- General Discussion --- p.75 / Chapter 6.1 --- EDHF-mediated endothelial function in porcine coronary and pulmonary circulation --- p.75 / Chapter 6.1.1 --- Role of EDHF in the regulation of porcine coronary arterial tone --- p.75 / Chapter 6.1.2 --- Role of EDHF in the regulation of porcine pulmonary arterial tone --- p.76 / Chapter 6.2 --- Alteration of EDHF-mediated endothelial functions after exposure to organ preservation solutions --- p.77 / Chapter 6.2.1 --- Effects of hyperkalemic solution on EDHF-mediated endothelial function in coronary and pulmonary circulation --- p.78 / Chapter 6.2.2 --- Effects of low-potassium-based preservation solution on EDHF-mediated endothelial function in pulmonary circulation --- p.79 / Chapter 6.2.3 --- Comparison between hyperkalemic solution and low-potassium-based preservation solution on EDHF-mediated endothelial function --- p.80 / Chapter 6.2.4 --- Effects of other component of organ preservation solutions on EDHF-mediated endothelial function --- p.81 / Chapter 6.3 --- Clinical implications --- p.82 / Chapter 6.4 --- The effect of H202 on the membrane potential in rat small mesenteric arteries --- p.83 / Chapter 6.5 --- Limitation of the study --- p.84 / Chapter 6.6 --- Future investigations --- p.85 / Chapter 6.7 --- Conclusions --- p.85 / References --- p.87
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_325583 |
Date | January 2006 |
Contributors | Wu, Min., Chinese University of Hong Kong Graduate School. Division of Surgery. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, xxv, 114 leaves : ill. ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0019 seconds