Return to search

Relationship between molecular structure and surface properties of self-assembled monolayers

Polyimides are frequently used as insulating layers in the microelectronics industry. These polymers are tough, have high thermal stability, and have favorable dielectric properties; consequently, polyimides are excellent materials for insulating layers in microelectronic devices. In this research, self-assembled monolayers are investigated for use as an adhesion promoter for metal substrates, and for corrosion protectors of the metal surface.

Gold substrates modified by adsorption of 3- and 4-aminothiophenol monolayers, 3- and (4-mercaptophenyl) phthalimide (MPP) monolayers, and by reaction of the 3- and 4-aminothiophenol monolayers with the phthalic anhydride were studied using reflection absorption infrared spectroscopy, contact angle measurement, ellipsometry, and electrochemical measurements. Reactions on the monolayers are used to model the attachment of an insulating polyimide to the substrate. The covalent attachment of the anhydride is confirmed, and the efficiency of the reaction of the aminothiolphenol monolayers is investigated. The reactivity of the aminothiolphenol monolayers is found to depend on the position of the amino-group around the phenyl ring.

Impedance spectroscopy is used to investigate the ionic insulating properties of these systems. The 4-mercaptophthalimide monolayer is found to have the highest monolayer resistance to ion transport. This result suggests that it forms the most densely packed monolayer. The monolayer resistance of the surfaces prepared by adsorption of the aminothiolphenol isomers followed by reaction with phthalic anhydride is much lower than the corresponding deposited mercaptophthalimide monolayers. These results suggest that the reaction efficiency is low. Impedance spectroscopy and polarization measurements suggests a higher protection efficiency for 3-mercaptophenylphthalimide. These results will be discussed in the context of the ability of the isomeric mercaptophthalimide monolayers to serve as protectors against substrate corrosion. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/29056
Date24 September 2004
CreatorsLi, Huimin
ContributorsChemistry, Anderson, Mark R., Brewer, Karen J., Morris, John R., Long, Gary L., Davis, Richey M.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
Relationdissertation.pdf

Page generated in 0.0021 seconds