• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 8
  • Tagged with
  • 25
  • 15
  • 11
  • 11
  • 10
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Surface Chemistry of CF3I on Cu(111): C-F Activation, Carbene Insertion, £]-Elimination, and Copper Etching Reactions

Chiu, Wen-Yi 24 July 2002 (has links)
none
2

Surface Chemistry of Difluorovinylidene Species on Cu(111)

Lee, Kang-ning 25 July 2008 (has links)
We investigated the reactivity of difluorovinylidene groups (C2F2) on Cu(111) under ultrahigh vacuum conditions. Difluorovinylidene moieties bonded to surface were generated by the dissociative adsorption of 1,1-dibromodifluoroethylene. Temperature Programmed desorption (TPD) and reflection-adsorption infrared spectroscopy (RAIRS) revealed the thermal reaction pathways, and a variety of intermediates were identified or inferred. The major desorption product, hexafluoro-2-butyne (C4F6), was detected at 445 K. It invokes a step of fluoride addition to difluorovinylidene to render the intermediacy of C2F3. However, differences exist when the vibration data from F + C=CF2 were compared with those from C−CF3 and CF=CF2 in previous literature, implying that the form is neither ethylidyne nor vinyl. Based on the concept of fluorine hyperconjugation, density function theory (DFT) calculations were utilized to obtain two transition states, quasi-vinyl and -ethylidyne, which can account for the differences present in the IR spectra. The relative thermal stability follows the trend of vinyl > quasi-ethylidyne > quasi-vinyl > vinylidene > ethylidyne suggested by IR and DFT calculations. Finally, the end product, CF3C¡ÝCCF3, might be formed by coupling of two quasi-ethylidyne species via the partial allenic forms.
3

Infrared studies of hydrocarbon adsorption on Ni{111}

Cooper, Elaine January 1995 (has links)
Reflection-absorption infrared spectroscopy (RAIRS) has been used to probe the interaction of cyclohexane, partially deuterated cyclohexane C<sub>6</sub>HD<sub>11</sub>, toluene and ethylene with the Ni{111} surface. The coadsorption of cyclohexane and oxygen on the Ni{111} surface has also been studied in some detail; the effects of differing coverages of both pre- and post- dosed oxygen on cyclohexane adsorption has been investigated. As these experiments were the first to be completed using a new UHV system, an important element of this PhD project involved commissioning the UHV system, including the LEED and Auger apparatus, and setting up the RAIRS optical system. On the clean Ni{111} surface at 110 K adsorbed cyclohexane exhibits a site symmetry of C<sub>3v</sub> which persists through to the multilayer regime. Adsorbed molecules in the first layer exhibit a broadened and downshifted vCh stretching vibrational band, thought to arise from CH...M interactions and observed on many metal single crystal surfaces. The effect of coadsorbed oxygen on cyclohexane adsorption is strongly coverage dependent. At lower oxygen coverages, θ<sub>O</sub> ≤ 0.25, a further downshifting of the softened vCH stretching vibration is observed, indicating the importance of charge transfer from the filled CHσ orbital to the metal in weakening the C-H bond. Adsorption of cyclohexane on the Ni{111}-(√3x√3)R30°-O surface, θ<sub>O</sub> = 0.33, leads to total suppression of any C-H...M interaction, attributed to blocking of the bare metal sites by the adsorbed atoms. Post-dosing of oxygen on the cyclohexane adlayer leads to compression of existing islands of cyclohexane, involving molecular transfer from the first layer to the second. This is attributed to the difference in heats of adsorption of the two adsorbates.
4

Thermal and photoinduced behaviour of palladium particles and transition metal carbonyls on TiO←2(110)

Lu, Gang January 1995 (has links)
No description available.
5

Thermal Chemistry of Benzyl Isocyanate and Phenyl Isocyanate on Cu(111)

Ma, Kuo-Chen 09 August 2011 (has links)
Nitrenes are reactive intermediates for many organic reactions, such as Curtius rearrangement. The thermo- or photochemical- decomposition of azides or isocyanates was known to generate nitrenes. We investigated the thermal chemistry of nitrene adsorbed on Cu(111) using benzyl azide (Bz-N=N=N), benzyl isocyanate (Bz-N=C=O) and phenyl isocyanate (ph-N=C=O) as precursors under ultrahigh vacuum conditions using temperature-programmed reaction/desorption (TPR/D), reflectionabsorption infrared spectroscopy (RAIRS) and X-ray photoelectron spectroscopy (XPS). Our study shows that despite of the isoelectronic functionalities (-N=N=N vs. -N=C=O) these molecules undergo different reaction pathways. For benzyl azide (Bz-N=N=N), the azido group losses N2 ,and the phenyl group migrates from nitrogen to carbon, forming surface bound H2C=N-Ph at 210 K. Eventually, H2 elimination and a carbon-to-nitrogen phenyl shift give the thermally stable ph-CN final product. XPS reveals that benzyl isocyanate (Bz-N=C=O) rearranges to form amide intermediate on the surface, which breaks into CO2, HCN and toluene at 410 K. RAIRs suggests that phenyl isocyanate (ph-N=C=O) undergoes cyclodimerization, cyclotrimerization and condensation to remove CO2 at 170 K, and phenyl group shifts from nitrogen to carbon to produce a metal bound acyl nitrene species (Ph-(C=O)-N---Cu) at 410 K.
6

Thermal Chemistry of Nitromethane on Cu(111)

Syu, Cui-Fang 31 July 2012 (has links)
Nitromethane is the simplest organic-nitro compound as well as the archetype of an important class of high explosive. Homogeneous nitromethane reactions have been the subject of extensive studies. Particularly the unimolecular isomerization of nitromethane to methyl nitrite is proven to be competitive with simple C-N bond (bond energy 60 kcal/mol) rupture. The activation energy for the rearrangement was measured to be 55.5 kcal/mol and methyl nitrite has a very weak CH3O-NO bond energy 42 kcal/mol lower than that for homolysis. The thermal chemistry of nitromethane on Cu(111) was studied by a combination of temperature-programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS) techniques. TPD spectra show that the desorption features include the physisorbed multilayer and monolayer of CH3NO2 at 150 and 190 K, respectively. The major decomposition pathway is via cleavage of O-N bond to yield a major product NO, which is characterized by m/z 30(NO+). A possible contribution from isomerization of nitromethane to methyl nitrite (CH3NO2 CH3ONO) on the surface cannot be ruled out at 278 K. In addition to isomerization, the dehydrogenation products CO and CO2 are also unveiled as part of the desorption features at 314 and 455 K, respectively. We can further prove the reactivity of nitromethane on Cu(111) at 367 K by using the deuterated form of nitromethane which reveals the corresponding desorption TPR/D signals of D2, D2O and CD4. However, we find that nitromethane also reacts by dissociating the C-H bond and the O-N bond, however, leaving the C-N bond intact. Along this reaction channel, HCN desorbs as a product above 360 K, as evidenced by a broad desorption feature of m/z 27. Dimerization of CN to C2N2 occurs at 815 K. The RAIR spectroscopy demonstrates that nitromethane is indeed adsorbed on Cu(111) at 100 K. The formation of methoxy and formyl are supported by the observation of desorption of NO at 278 K with the characteristic NO stretching mode found at 1535 cm-1. Moreover, we assign side-bonded CN and aminomethylene (HC-NH2) present on Cu(111). After the surface is annealed to 330 K, a signature band at 2173 cm-1 is assigned to terminal-bounded CN stretching mode. This band eventually fades out above 900 K consistent with the evolution of cyanogen at 815 K.
7

Surface Science Studies of Catalysis by Gold

Wu, Shin-mou 28 August 2012 (has links)
Gold¡¦s reputation as an inactive catalyst has been changed since the discoveries made by pioneers, including Bond, Hutchings, and Haruta. Today, exploring gold¡¦s potential to catalyze a range of heterogeneous and homogeneous reactions has been a hot topic. In this dissertation, reaction of CO and hydroxyl groups and cyclotrimerization of propanal (C2H5CHO) catalyzed by gold were studied by using temperature-programmed desorption (TPD), reflection absorption infrared spectroscopy (RAIRS), X-ray photoemission spectroscopy (XPS), low energy electron diffraction (LEED) and density functional theory (DFT) calculations. keywords: LEED, XPS, RAIRS,TPD, Gold, cyclotrimerization, propanal, CO oxidation In the first topic, CO oxidation by hydroxyl groups prepared by electron beam bombardment of physisorbed water was performed on Au(110) and Au(531). The formation of hydroxyl groups was evidenced by the observation of the desorption of D2O at 175 K and D2 at 230 K in TPD, in conjunction with the O 1s peak at 531.32 eV in XPS. The adsorption of CO on the hydroxyl-covered surface resulted in CO2 desorption at 110 K and 150 K on Au(110), and 105 K, 140 K and 180 K on Au(531). In the investigation of various D2O and CO coverages, the adsorption of CO and D2O was found to be preferred on low-coordinated Au atoms. Additionally, D2O on low-coordinated Au atoms required lower dissociation energy. This site effect was correlated with the high activity of smaller gold nanoparticles. Moreover, the mechanism for reaction of CO and hydroxyl groups was suggested to be similar to the water-gas-shift reaction due to the observation of the enhancement of D2 desorption after reaction. The second topic studied the cyclotrimerization of propanal catalyzed by gold. After exposing Au(110) to propanal at 180 K, the desorption of 2,4,6-triethyl-1,3,5-trioxane ((C2H5CHO)3) was observed at 340 K. The RAIRS and XPS studies showed that the cyclotrimerization of propanal was completed at 180 K. The same results were also detected on Au(531). However, only propanal molecular desorption was found on Au(111) suggesting that the low coordination Au atoms and the trench-like structure on Au(110) and Au(531) play key roles. On Ag(110) and Cu(110), no reaction was found indicating that the intrinsic nature of gold is also an important factor for the reaction. Investigation on Pt(110) inherited with the same (1x2) missing-row structure revealed that the decarbonylation of propanal occurred due to the stronger £b2(C,O) bonding mode. The reactions observed on Au(110), Au(531), and Pt(110) strongly suggest that the activity for the reactions may result from the relativistic effect of gold. The DFT calculations further showed the interactions between hydrogen in carbonyl groups and low-coordinated Au atoms (O=C-H¡KAu) help to gather propanal molecules and preorganize them at specific surface sites while an intracomplex reaction takes place.
8

Study on the Reaction Pathways of Fluorine-Substituted Propyl Groups on Cu(111)

Wu, Shin-Mou 03 August 2006 (has links)
In organometallic study, activation of C-F bond is an interesting subject, especially in fluoro-substituted propyl groups, because of their different reactivityn from fluoro-substituted methyl and ethyl groups. In this thesis, fluorinated propyl groups were studied on a Cu(111) surface under ultrahigh vacuum (UHV) conditions. We have examined the kinetics of the £]-elimination reaction in CF3CF2CH2-Cu, CHF2CF2CH2-Cu, and CF3CH2CH2-Cu. These species all decompose via £]-elimination to give CF3CF=CH2, CHF2CF=CH2, and CF3CH=CH2. The first two species undergo £]-fluoride elimination and the third one undergoes £]-hydride elimination. The difference in activation energies between the first two accounts for the charge separation (R-C£]+£_¡KF−£_¡KM+£_) in the transition state proposed by Gellman. The activation energies for £]-hydride elimination (CF3CH2CH2-Cu) and £]-fluoride elimination (CF3CF2CH2-Cu) was also compared. The activation energy for £]-fluoride elimination is found to be lower than that of £]-hydride elimination. In the studies of reaction pathways for perfluoropropyl groups (n-C3F7-Cu and i-C3F7-Cu) on Cu(111), we discovered novel chemistry in TPD. n-C3F7-Cu undergoes Cu-C homolytic cleavage (radical desorption) at 340 K, whereas i-C3F7-Cu eliminates the £]-fluorine at 365 K. By changing the Cu-C bond length in the i-C3F7-5Cu models their IR spectra was calculated. We discover that the IR of i-C3F7-5Cu with shorter Cu-C bond (1.728&#x00C5;) is more similar to the experimental IR spectra. That demonstrates the bond strength of Cu-C bond of i-C3F7-Cu is too strong to undergo Cu-C homolytic cleavage at 340 K. Hence, £]-F decomposition becomes the favorite pathway to i-C3F7-Cu because there are more £]-F atoms available in this moiety.
9

Investigation of Ligand Surface Chemistry: Implications for the Use of £]-Diketonate Copper(I) Complexes as Precursors for Copper Thin-film Growth

Kuo, Wen-Chieh 24 July 2002 (has links)
Two most useful families of copper CVD precursors that have been utilized widely are the Cu(I) and Cu(II) £]-diketone complexes. The Cu(II)precursors require the use of an external reducing agent such as hydrogen to deposit copper films, i.e. CuII(£]-diketonate)2 + H2 ¡÷ Cu0+2 £]-diketonate. The Cu(I) precursors deposit pure copper films without the use of an external agent via a disproportionation reaction that produces a Cu(II)£]-diketonate in conjunction with other organic byproducts, i.e. 2CuI(£]-diketonate)L ¡÷ Cu0+ CuII(£]-diketonate)2+2L where L is a typical Lewis base neutral ligand. However, Do those ligands resulting from the dissociation of the precursors simply desorb intact from the substrate or the growing films, or react further on the surface? To understand the surface chemistry of these ligands may provide better knowledge for designing more superior precursors and improvement of fabrication processes. Cu(hfac)(VTMS) and Cu(hfac)(MHY) are the most promising Cu(I) precursors, as shown in Scheme 1.1. Here we report studies on the chemistry of VTMS, MHY and hfacH on a Cu(111) surface. It should be noted that the hfacH is the simplest molecule containing the hfac, so we use it as a reference for £]-diketonate ligand. The Cu(111) single crystal was used to mimic the reactivity of these ligands on a growing Cu film during copper CVD. In situ analysis of ligand surface chemistry is carried out by TPD/R (temperature-programmed desorption/reaction) and RAIRS (reflection adsorption infrared spectroscopy) to elucidate plausible reaction mechanisms by which ligands decompose and eventually lead to impurity incorporation into the growing films, and to suggest means of minimizing such reactions.
10

Reaction Pathways and Intermediates of Perfluoroethyl Groups Adsorbed on Cu(111)

Huang, Jia-Tze 24 July 2003 (has links)
We investigated the reactivity and bonding of perfluoroethyl groups (C2F5) on Cu(111) under ultra high vacuum conditions. Perfluoroethyl moieties bonded to the surface were generated by the dissociative adsorption of perfluoroethyl iodide. Temperature-programmed reaction/desorption (TPR/D) and reflection- adsorption infrared spectroscopy (RAIRS) revealed abounding reaction pathways, and a variety of intermediates were either identified or inferred. The major desorption products, hexafluoro-2-butyne and hexafluorocyclobutene, were detected at 360K and 440K, and some octafluorobutene was observed at 320K at higher coverages, implicating that two fluorine atoms were abstracted step-by-step from the C2F5 on Cu(111). Two sets of signature IR bands were recognized. One set (2054cm-1, 1409cm-1, 1210cm-1) was found to correlate with the surface-bound trifluorovinyl moieties which were also confirmed by directly generating this species from trifluorovinyl iodide. The other set of vibrational features (1322cm-1, 1224cm-1, 950cm-1) presumably implied the trifluoro- ethylidyne intermediate on the surface. Hence, C2F5(ad) underwent the £\-F and £]-F elimination reactions in sequence to yield trifluorovinyl which eventually led to hexafluoro-2-butyne. The alternative route was that C2F5(ad) proceeded via the £\-F elimination reaction twice to render trifluoroethylidyne which ultimately resulted in hexafluorocyclobutene. To our knowledge, the occurrence of the sequential £\-F and£]-F elimination pathway, or the double £\-F elimination reaction has never been observed in any single system.

Page generated in 0.0136 seconds