• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal Chemistry of Benzyl Isocyanate and Phenyl Isocyanate on Cu(111)

Ma, Kuo-Chen 09 August 2011 (has links)
Nitrenes are reactive intermediates for many organic reactions, such as Curtius rearrangement. The thermo- or photochemical- decomposition of azides or isocyanates was known to generate nitrenes. We investigated the thermal chemistry of nitrene adsorbed on Cu(111) using benzyl azide (Bz-N=N=N), benzyl isocyanate (Bz-N=C=O) and phenyl isocyanate (ph-N=C=O) as precursors under ultrahigh vacuum conditions using temperature-programmed reaction/desorption (TPR/D), reflectionabsorption infrared spectroscopy (RAIRS) and X-ray photoelectron spectroscopy (XPS). Our study shows that despite of the isoelectronic functionalities (-N=N=N vs. -N=C=O) these molecules undergo different reaction pathways. For benzyl azide (Bz-N=N=N), the azido group losses N2 ,and the phenyl group migrates from nitrogen to carbon, forming surface bound H2C=N-Ph at 210 K. Eventually, H2 elimination and a carbon-to-nitrogen phenyl shift give the thermally stable ph-CN final product. XPS reveals that benzyl isocyanate (Bz-N=C=O) rearranges to form amide intermediate on the surface, which breaks into CO2, HCN and toluene at 410 K. RAIRs suggests that phenyl isocyanate (ph-N=C=O) undergoes cyclodimerization, cyclotrimerization and condensation to remove CO2 at 170 K, and phenyl group shifts from nitrogen to carbon to produce a metal bound acyl nitrene species (Ph-(C=O)-N---Cu) at 410 K.
2

Thermal Chemistry of Benzyl Azide to Phenyl Isocyanide on Cu(111):Evidence for a Surface Imine Intermediate

Cheng, Cheng-Hung 03 August 2010 (has links)
Abstract The Copper Catalyzed Azide-Alkyne Cycloaddition (CuAAC) is a paradigm of ¡§click¡¨ chemistry which has been applied in different fields. To understand the interaction between organic azides and a copper surface, we use benzyl azide (Bn¡ÐN£\¡ÐN£]¡ÝN£^) as an adsorbate on Cu(111) under ultrahigh vacuum conditions. The thermal reaction process was explored by a combination of temperature-programmed desorption (TPD), reflection absorption infrared spectroscopy (RAIRS), and X-ray photoemission spectroscopy (XPS) techniques. The TPD profiles show a multilayer desorption peak at 190K, two peaks for N2 , and H2 from 270K to 390K. At 345K, peak of desorption product (m/z=103) represents phenyl cyanide (PhCN) or phenyl isocyanide (PhNC). RAIR and XP spectra demonstrate that at 190K benzyl azide on Cu(111) readily adopt the imine intermediate formalism involving N£\¡ÐN£] scission and phenyl group shift from carbon to nitrogen. The mechanism is analogous to the organic reaction of Schmidt rearrangement. To heat the surface to 250K, the CH2 group of the imine intermediate undergoes C¡ÐH bond scission to produce a surface isocyanide intermediate, (M=C=N¡ÐPh). Therefore the final desorption product is phenyl isocyanide at ~350K. Intriguingly, the thermal chemistry of benzyl azide involves both imine and isocyanide intermediacy, despite the fact that azido species usually generate nitrene or imido complexes under thermal conditions.

Page generated in 0.0516 seconds