Return to search

Identification and characterisation of potential neuroprotective proteins induced by erythropoietin (EPO) preconditioning of cortical neuronal cultures

[Truncated abstract] Clinical therapeutic agents to directly inhibit ischaemic neuronal death are presently unavailable. One approach to developing therapeutics is based upon the identification of proteins up-regulated by 'preconditioning', a natural adaptive response utilised by the neural cells to counter damaging insults, such as ischaemia. Thus, my project aimed to firstly identify proteins differentially expressed following erythropoietin (EPO) mediated neuronal preconditioning and secondly to assess whether any of these proteins possessed neuroprotective activity using in vitro ischaemia like models. To achieve the first aim, it was shown that in vitro neuronal EPO preconditioning could: (i) induce cell signal changes in neuronal cultures, (ii) protect neurons against in vitro ischaemia and (iii) induce differential protein expression. Overall, 40 differentially expressed proteins were identified in cortical neuronal cultures following EPO preconditioning. In order to investigate the neuroprotective or neurodamaging activity of proteins induced by EPO preconditioning I developed an adenoviral expression system for use in neuronal cultures. To this end, I assessed the suitability of four promoters (cytomegalovirus [CMV], rous sarcoma virus [RSV], human synapsin 1 [hSYN1], rat synapsin 1 [rSYN1]) previously used to express proteins in neuronal cultures and demonstrated the superiority of the RSV promoter for this purpose. ... Finally, in order to validate this adenoviral expression system, I over-expressed the anti-apoptotic protein Bcl-XL in neuronal cultures and subsequently confirmed its neuroprotective activity in the in vitro ischaemia and oxidative stress models used in my project. Using this adenoviral vector system and the in vitro oxidative stress model I assessed a number of proteins up-regulated by EPO preconditioning. The results of this preliminary study indicated that cyclophilin A (CyPA), peroxiredoxin 2 (PRDX2) and superoxide dismutase 1 (SOD1) over-expression were neuroprotective. It was subsequently verified that adenoviral mediated over-expression of CyPA and PRDX2, v but not SOD1 in cortical neuronal cultures could protect neurons from in vitro ischaemia. I also confirmed that CyPA mRNA increased in the rat hippocampus in response to 3 minutes of global cerebral ischaemia. Interestingly, an increase in CyPA, PRDX2 or SOD1 protein was not observed in the same experimental paradigm. To investigate CyPA's mode of action I confirmed that cultured neurons, but not astrocytes, express the CyPA receptor, CD147. It was also demonstrated that administration of exogenous CyPA protein to neuronal cultures could protect neurons against oxidative and ischaemic injury. I further demonstrated that exogenous administration of CyPA induces a rapid and transient activation of the extracellular signal-regulated kinase (ERK) 1/2 pathway in neuronal cultures. From this observation, I have proposed that the extracellular mediated neuroprotective activity of CyPA occurs via CD147 receptor signalling and activation of ERK1/2 pro-survival pathways. Based on the findings reported in this thesis, the neuroprotective activities of PRDX2 and CyPA warrant further investigation as targets for the development of new therapies to treat cerebral ischaemia.

Identiferoai:union.ndltd.org:ADTP/194793
Date January 2008
CreatorsBoulos, Sherif
PublisherUniversity of Western Australia. School of Biomedical and Chemical Sciences, Centre for Neuromuscular and Neurological Disorders (Australia)
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Sherif Boulos, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html

Page generated in 0.0024 seconds