Integration flows are increasingly used to specify and execute data-intensive integration tasks between heterogeneous systems and applications. There are many different application areas such as real-time ETL and data synchronization between operational systems. For the reasons of an increasing amount of data, highly distributed IT infrastructures, and high requirements for data consistency and up-to-dateness of query results, many instances of integration flows are executed over time. Due to this high load and blocking synchronous source systems, the performance of the central integration platform is crucial for an IT infrastructure. To tackle these high performance requirements, we introduce the concept of cost-based optimization of imperative integration flows that relies on incremental statistics maintenance and inter-instance plan re-optimization. As a foundation, we introduce the concept of periodical re-optimization including novel cost-based optimization techniques that are tailor-made for integration flows. Furthermore, we refine the periodical re-optimization to on-demand re-optimization in order to overcome the problems of many unnecessary re-optimization steps and adaptation delays, where we miss optimization opportunities. This approach ensures low optimization overhead and fast workload adaptation.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-67936 |
Date | 02 May 2011 |
Creators | Böhm, Matthias |
Contributors | Technische Universität Dresden, Fakultät Informatik, Prof. Dr.-Ing. Wolfgang Lehner, Prof. Dr.-Ing. Wolfgang Lehner, Prof. Dr.-Ing. habil. Bernhard Mitschang |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0027 seconds