Les polymères stimuli-sensibles ont considérablement attiré l’intérêt scientifique grâce à leur capacité à changer de conformation ou d’état de solvatation sous l’influence d’un stimulus externe tel que la température, le pH, la lumière, les champs électriques et magnétiques ou encore la composition du solvant. Ces polymères peuvent être préparés sous différentes formes (micro-/nanoparticules, films minces, membranes, polymère peigne, micelles …) et sont utilisés dans diverses applications telles que l’ingénierie tissulaire, la vectorisation/libération de médicaments et les (bio)capteurs. Dans le domaine des capteurs, les polymères stimuli-sensibles sont souvent utilisés comme transducteurs entre le milieu à analyser et la plateforme de détection. Le but de cette étude est de développer un film transducteur à base de polymère thermo-sensible pour la détection du fer. La première étape consiste à synthétiser un microgel de poly(N-isopropylacrylamide-co-acide acrylique) (PNIPAM-co-AAc) via une polymérisation radicalaire par précipitation en utilisant un monomère thermo-sensible (NIPAM), un co-monomère (AAc) et l’agent de réticulation N, N’-methylenebis(acrylamide) (BIS). La réaction mène à des microgels dotés d’une température critique inférieure de solubilité (LCST) définie comme la température à laquelle le microgel subit une transition d’un état gonflé à un état replié. Dans le but d’étudier la taille du microgel, la concentration en monomères et la vitesse d’agitation sont variés. Ensuite, les quantités de co-monomère (AAc) et de réticulant (BIS) sont variés afin d’étudier le comportement thermo-sensible. Toutes ces synthèses produisent des microgels dont la LCST se situe autour de 30-32°C avec une excellente réversibilité de la transition de l’état gonflé vers l’état replié. Considérant la nature de l’objet (microgel), la synthèse utilisée dans ce projet est reproductible d’un point de vue taille de microgel et LCST. Afin de prouver le concept de détection, les microgels sont fonctionnalisés avec la dopamine qui contient des groupements catéchol connus pour leur affinité spécifique avec les ions du fer. La LCST des microgels fonctionnalisés est décalée vers les plus hautes températures et la transition de phase est moins brutale. La deuxième étape du projet consiste à déposer le microgel sur un substrat en verre revêtu d’une fine couche d’or fonctionnalisée avec la cystéamine. Différents paramètres (pH, concentration, température, durée de trempage) sont variés afin d’optimiser la déposition du microgel. La microscopie à force atomique (AFM) est utilisée pour observer la surface du microgel déposé et déterminer les conditions optimales de déposition. Suite à cette étape, la spectroscopie par résonance de plasmon de surface (SPR) est utilisée dans le but d’étudier les comportements thermo- et iono-sensibles du film mince de microgel. / Stimuli-responsive polymers have attracted considerable scientific interest because of their ability to undergo conformational or solvation state changes under the influence of an external stimulus such as temperature, pH, light, magnetic and electric field or solvent composition. These polymers can be prepared in various architectures (as micro-/nanoparticles, thin films, membranes, polymer brushes, micelles …) and have found application in diverse fields, including tissue engineering, drug delivery and as (bio)sensors. In the field of sensors, stimuliresponsive polymers are often used as transducers between the environment to be analyzed and the detection platform. In this study, we aim to develop a transducer film based on a thermo-responsive polymer for iron detection. The first step is to synthesize a poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-co-AAc) microgel via free radical precipitation polymerization using a thermo-responsive monomer (NIPAM), a co-monomer (AAc) and a crosslinker (N, N’-methylenebisacrylamide) (BIS). This polymerization yields microgels which exhibit a Lower Critical Solution Temperature (LCST), identified as the temperature at which the microgel undergoes a transition from a swollen state to a collapsed state. In order to study the microgel size, the monomer concentration and the stirring speed were varied. Then, the comonomer (AAc) and crosslinker (BIS) quantities were varied to study the thermo-responsive behaviour. All of these syntheses produce microgels with a LCST around 30-32°C and an excellent reversibility in terms of transition from the swollen state to the collapsed state. Considering the nature of the object (microgel), the synthesis used in this project is reproducible in terms of microgel size and LCST. To demonstrate the detection concept, microgels are functionalized with dopamine that contains catechol groups known for their specific affinity for the iron ions. The LCST of functionalized microgels shifts toward higher temperatures and their phase transition is less sharp. The second step of the project consists of depositing the microgel on a glass substrate coated with a gold thin film functionalized with cysteamine. Different parameters (pH, concentration, temperature, dipping duration) were varied in order to optimize microgel deposition. Atomic Force Microscopy (AFM) was used to observe the surface of the microgel to determine the optimal coating conditions. After this step, Surface Plasmon Resonance (SPR) spectroscopy was used to characterize the thermo- and iono-responsive behaviours of the microgel thin film.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/37621 |
Date | 19 December 2019 |
Creators | Berhault, Aurélie |
Contributors | Boudreau, Denis |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | mémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 1 ressource en ligne (xiii, 87 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.002 seconds