Peridynamics is an emerging nonlocal continuum theory which allows governing field equations to be applicable at discontinuities. This applicability at discontinuities is achieved by replacing the spatial derivatives, which lose meaning at discontinuities, with integrals that are valid regardless of the existence of a discontinuity. Within the realm of solid mechanics, the peridynamic theory is one of the techniques that has been employed to model material fracture. In this work, the peridynamic theory is used to investigate different fracture problems in order to establish its fidelity for predicting crack growth. Various fracture experiments are modeled and analyzed. The peridynamic predictions are made and compared against experimental findings along with predictions from other commonly used numerical fracture techniques. Additionally, this work applies the peridynamic framework to model heat transfer. Generalized peridynamic heat transfer equation is formulated using the Lagrangian formalism. Peridynamic heat conduction quantites are related to quanties from the classical theory. A numerical procedure based on an explicit time stepping scheme is adopted to solve the peridynamic heat transfer equation and various benchmark problems are considered for verification of the model. This paves the way for the coupling of thermal and structural fields within the framework of peridynamics. The fully coupled peridynamic thermomechanical equations are derived based on thermodynamic considerations, and a nondimensional form of the coupled thermomechanical peridynamic equations is also presented. An explicit staggered algorithm is implemented in order to numerically approximate the solution to these coupled equations. The coupled thermal and structural responses of a thermoelastic semi-infinite bar and a thermoelastic vibrating bar are subsequently investigated.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/204892 |
Date | January 2011 |
Creators | Agwai, Abigail G. |
Contributors | Madenci, Erdogan, Silling, Stewart, Mansuripur, Masud, Chan, Cholik, Ganapol, Barry, Madenci, Erdogan |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Electronic Dissertation |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0021 seconds