Spelling suggestions: "subject:"nonlocal theory"" "subject:"onlocal theory""
1 |
A Peridynamic Approach for Coupled FieldsAgwai, Abigail G. January 2011 (has links)
Peridynamics is an emerging nonlocal continuum theory which allows governing field equations to be applicable at discontinuities. This applicability at discontinuities is achieved by replacing the spatial derivatives, which lose meaning at discontinuities, with integrals that are valid regardless of the existence of a discontinuity. Within the realm of solid mechanics, the peridynamic theory is one of the techniques that has been employed to model material fracture. In this work, the peridynamic theory is used to investigate different fracture problems in order to establish its fidelity for predicting crack growth. Various fracture experiments are modeled and analyzed. The peridynamic predictions are made and compared against experimental findings along with predictions from other commonly used numerical fracture techniques. Additionally, this work applies the peridynamic framework to model heat transfer. Generalized peridynamic heat transfer equation is formulated using the Lagrangian formalism. Peridynamic heat conduction quantites are related to quanties from the classical theory. A numerical procedure based on an explicit time stepping scheme is adopted to solve the peridynamic heat transfer equation and various benchmark problems are considered for verification of the model. This paves the way for the coupling of thermal and structural fields within the framework of peridynamics. The fully coupled peridynamic thermomechanical equations are derived based on thermodynamic considerations, and a nondimensional form of the coupled thermomechanical peridynamic equations is also presented. An explicit staggered algorithm is implemented in order to numerically approximate the solution to these coupled equations. The coupled thermal and structural responses of a thermoelastic semi-infinite bar and a thermoelastic vibrating bar are subsequently investigated.
|
2 |
Peridynamic Modeling and Extending the Concept to Peri-Ultrasound ModelingHafezi, Mohammad Hadi, Hafezi, Mohammad Hadi January 2017 (has links)
In this dissertation, a novel fast modeling technique called peri-ultrasound that can model both linear and nonlinear ultrasonic behavior of materials is developed and implemented. Nonlinear ultrasonic response can detect even very small material non- linearity. Quantification of the material nonlinearity at the early stages of damage is important to avoid catastrophic failure and reduce repair costs. The developed model uses the nonlocal continuum-based peridynamic theory which was found to be a good simulation tool for handling crack propagation modeling, in particular when multiple cracks grow simultaneously. The developed peri-ultrasound modeling tool has been used to model the ultrasonic response at the interface of two materials in presence of an interface crack. Also, the stress wave propagation in a half-space (or half-plane for a 2-dimensional problem) with boundary loading is investigated using peri-ultrasound modeling. In another simulation, well-established two-dimensional Lamb's problem is investigated where the results are verified against available analytical solution. Also, the interaction between the surface wave and a surface breaking crack is studied.
|
3 |
On the behavior of a linear elastic peridynamic material / Sobre o comportamento de um material peridinâmico elástico linearSeitenfuss, Alan Bourscheidt 19 April 2017 (has links)
The peridynamic theory is a generalization of classical continuum mechanics and takes into account the interaction between material points separated by a finite distance within a peridynamic horizon δ. The parameter δ corresponds to a length scale and is treated as a material property related to the microstructure of the body. Since the balance of linear momentum is written in terms of an integral equation that remains valid in the presence of discontinuities, the peridynamic theory is suitable for studying the material behavior in regions with singularities. The first part of this work concerns the evaluation of the properties of a linear elastic peridynamic material in the context of a three-dimensional state-based peridynamic theory, which uses the difference displacement quotient field in the neighborhood of a material point and considers both length and relative angle changes. This material model is based upon a free energy function that contains four material constants, being, therefore, different from other peridynamic models found in the literature, which contain only two material constants. Using convergence results of the peridynamic theory to the classical linear elasticity theory in the limit of small horizons and a correspondence argument between the free energy function and the strain energy density function from the classical theory, expressions were obtained previously relating three peridynamic constants to the classical elastic constants of an isotropic linear elastic material. To calculate the fourth peridynamic material constant, which couples both bond length and relative angle changes, the correspondence argument is used once again together with the strain field of a linearly elastic beam subjected to pure bending. The expression for the fourth constant is obtained in terms of the Poisson\'s ratio and the shear elastic modulus of the classical theory. The validity of this expression is confirmed through the consideration of other experiments in mechanics, such as bending of a beam by terminal loads and anti-plane shear of a circular cylinder. In particular, numerical results indicate that the expressions for the constants are independent of the experiment chosen. The second part of this work concerns an investigation of the behavior of a one-dimensional linearly elastic bar of length L in the context of the peridynamic theory; especially, near the ends of the bar, where it is expected that the behavior of the peridynamic bar may be very different from the behavior of a classical linear elastic bar. The bar is in equilibrium without body force, is fixed at one end, and is subjected to an imposed displacement at the other end. The bar has micromodulus C, which is related to the Young\'s modulus E in the classical theory through different expressions found in the literature. Depending on the expression for C, the displacement field may be singular near the ends, which is in contrast to the linear behavior of the displacement field observed in classical linear elasticity. In spite of the above, it is also shown that the peridynamic displacement field converges to its classical counterpart as the peridynamic horizon tends to zero. / A teoria peridinâmica é uma generalização da teoria clássica da mecânica do contínuo e considera a interação de pontos materiais devido a forças que agem a uma distância finita entre si, além da qual considera-se nula a força de interação. Por ter o balanço de momento linear formulado como uma equação integral que permanece válida na presença de descontinuidades, a teoria peridinâmica é adequada para o estudo do comportamento de materiais em regiões com singularidades. A primeira parte deste trabalho consiste no cálculo das propriedades de um material peridinâmico elástico linear no contexto de uma teoria peridinâmica de estado, linearmente elástica e tridimensional, que utiliza o campo quociente de deslocamento relativo na vizinhança de um ponto material e leva em conta mudanças relativas angulares e de comprimento. Esse modelo utiliza uma função energia livre que apresenta quatro constantes materiais, sendo, portanto, diferente de outros modelos peridinâmicos investigados na literatura, os quais contêm somente duas constantes materiais. Utilizando resultados de convergência da teoria peridinâmica para a teoria de elasticidade linear clássica no limite de pequenos horizontes e um argumento de correspondência entre as funções energia livre proposta e densidade de energia de deformação da teoria clássica, expressões para três constantes peridinâmicas foram obtidas em função das constantes de um material elástico e isotrópico da teoria clássica. O argumento de correspondêmcia, em conjunto com o campo de deformações de uma viga submetida à flexão pura, é utilizado para calcular a quarta constante peridinâmica do material, que relaciona mudanças angulares relativas e de comprimentos das ligações entre as partículas. Obtem-se uma expressão para a quarta constante em termos do coeficiente de Poisson e do módulo de elasticidade ao cisalhamento da teoria clássica. A validade dessa expressão é confirmada por meio da consideração de outros experimentos da mecânica, tais como flexão de um viga por cargas terminais e cisalhamento anti-plano de um eixo cilíndrico. Em particular, os resultados numéricos indicam que as expressões para as constantes são independentes do experimento escolhido. A segunda parte deste trabalho consiste em uma investigação do comportamento de uma barra unidimensional linearmente elástica de comprimento L no contexto da teoria peridinâmica; especialmente, próximo às extremidades da barra, onde espera-se que o comportamento da barra peridinâmica possa ser muito diferente do comportamento de uma barra elástica linear clássica. A barra está em equilíbrio e sem força de corpo, fixa em uma extremidade, e sujeita a deslocamento imposto na outra extremidade. A barra possui micromódulo C, o qual está relacionado ao módulo de Young E da teoria clássica por meio de diferentes expressões encontradas na literatura. Dependendo da expressão para C, o campo de deslocamento pode ser singular próximo às extremidades, o que contrasta com o comportamento linear do campo de deslocamento observado na elasticidade linear clássica. Apesar disso, é mostrado também que o campo de deslocamento peridinâmico converge para o campo de deslocamento da teoria clássica quando o horizonte peridinâmico tende a zero.
|
4 |
On the behavior of a linear elastic peridynamic material / Sobre o comportamento de um material peridinâmico elástico linearAlan Bourscheidt Seitenfuss 19 April 2017 (has links)
The peridynamic theory is a generalization of classical continuum mechanics and takes into account the interaction between material points separated by a finite distance within a peridynamic horizon δ. The parameter δ corresponds to a length scale and is treated as a material property related to the microstructure of the body. Since the balance of linear momentum is written in terms of an integral equation that remains valid in the presence of discontinuities, the peridynamic theory is suitable for studying the material behavior in regions with singularities. The first part of this work concerns the evaluation of the properties of a linear elastic peridynamic material in the context of a three-dimensional state-based peridynamic theory, which uses the difference displacement quotient field in the neighborhood of a material point and considers both length and relative angle changes. This material model is based upon a free energy function that contains four material constants, being, therefore, different from other peridynamic models found in the literature, which contain only two material constants. Using convergence results of the peridynamic theory to the classical linear elasticity theory in the limit of small horizons and a correspondence argument between the free energy function and the strain energy density function from the classical theory, expressions were obtained previously relating three peridynamic constants to the classical elastic constants of an isotropic linear elastic material. To calculate the fourth peridynamic material constant, which couples both bond length and relative angle changes, the correspondence argument is used once again together with the strain field of a linearly elastic beam subjected to pure bending. The expression for the fourth constant is obtained in terms of the Poisson\'s ratio and the shear elastic modulus of the classical theory. The validity of this expression is confirmed through the consideration of other experiments in mechanics, such as bending of a beam by terminal loads and anti-plane shear of a circular cylinder. In particular, numerical results indicate that the expressions for the constants are independent of the experiment chosen. The second part of this work concerns an investigation of the behavior of a one-dimensional linearly elastic bar of length L in the context of the peridynamic theory; especially, near the ends of the bar, where it is expected that the behavior of the peridynamic bar may be very different from the behavior of a classical linear elastic bar. The bar is in equilibrium without body force, is fixed at one end, and is subjected to an imposed displacement at the other end. The bar has micromodulus C, which is related to the Young\'s modulus E in the classical theory through different expressions found in the literature. Depending on the expression for C, the displacement field may be singular near the ends, which is in contrast to the linear behavior of the displacement field observed in classical linear elasticity. In spite of the above, it is also shown that the peridynamic displacement field converges to its classical counterpart as the peridynamic horizon tends to zero. / A teoria peridinâmica é uma generalização da teoria clássica da mecânica do contínuo e considera a interação de pontos materiais devido a forças que agem a uma distância finita entre si, além da qual considera-se nula a força de interação. Por ter o balanço de momento linear formulado como uma equação integral que permanece válida na presença de descontinuidades, a teoria peridinâmica é adequada para o estudo do comportamento de materiais em regiões com singularidades. A primeira parte deste trabalho consiste no cálculo das propriedades de um material peridinâmico elástico linear no contexto de uma teoria peridinâmica de estado, linearmente elástica e tridimensional, que utiliza o campo quociente de deslocamento relativo na vizinhança de um ponto material e leva em conta mudanças relativas angulares e de comprimento. Esse modelo utiliza uma função energia livre que apresenta quatro constantes materiais, sendo, portanto, diferente de outros modelos peridinâmicos investigados na literatura, os quais contêm somente duas constantes materiais. Utilizando resultados de convergência da teoria peridinâmica para a teoria de elasticidade linear clássica no limite de pequenos horizontes e um argumento de correspondência entre as funções energia livre proposta e densidade de energia de deformação da teoria clássica, expressões para três constantes peridinâmicas foram obtidas em função das constantes de um material elástico e isotrópico da teoria clássica. O argumento de correspondêmcia, em conjunto com o campo de deformações de uma viga submetida à flexão pura, é utilizado para calcular a quarta constante peridinâmica do material, que relaciona mudanças angulares relativas e de comprimentos das ligações entre as partículas. Obtem-se uma expressão para a quarta constante em termos do coeficiente de Poisson e do módulo de elasticidade ao cisalhamento da teoria clássica. A validade dessa expressão é confirmada por meio da consideração de outros experimentos da mecânica, tais como flexão de um viga por cargas terminais e cisalhamento anti-plano de um eixo cilíndrico. Em particular, os resultados numéricos indicam que as expressões para as constantes são independentes do experimento escolhido. A segunda parte deste trabalho consiste em uma investigação do comportamento de uma barra unidimensional linearmente elástica de comprimento L no contexto da teoria peridinâmica; especialmente, próximo às extremidades da barra, onde espera-se que o comportamento da barra peridinâmica possa ser muito diferente do comportamento de uma barra elástica linear clássica. A barra está em equilíbrio e sem força de corpo, fixa em uma extremidade, e sujeita a deslocamento imposto na outra extremidade. A barra possui micromódulo C, o qual está relacionado ao módulo de Young E da teoria clássica por meio de diferentes expressões encontradas na literatura. Dependendo da expressão para C, o campo de deslocamento pode ser singular próximo às extremidades, o que contrasta com o comportamento linear do campo de deslocamento observado na elasticidade linear clássica. Apesar disso, é mostrado também que o campo de deslocamento peridinâmico converge para o campo de deslocamento da teoria clássica quando o horizonte peridinâmico tende a zero.
|
5 |
Theorie macroscopique de propagation du son dans les milieux poreux 'à structure rigide permettant la dispersion spatiale: principe et validationNemati, Navid 11 December 2012 (has links) (PDF)
Ce travail présente et valide une théorie nonlocale nouvelle et généralisée, de la propagation acoustique dans les milieux poreux à structure rigide, saturés par un fluide viscothermique. Cette théorie linéaire permet de dépasser les limites de la théorie classique basée sur la théorie de l'homogénéisation. Elle prend en compte non seulement les phénomènes de dispersion temporelle, mais aussi ceux de dispersion spatiale. Dans le cadre de la nouvelle approche, une nouvelle procédure d'homogénéisation est proposée, qui permet de trouver les propriétés acoustiques à l'échelle macroscopique, en résolvant deux problèmes d'action-réponse indépendants, posés à l'échelle microscopique de Navier-Stokes-Fourier. Contrairement à la méthode classique d'homogénéisation, aucune contrainte de séparation d'échelle n'est introduite. En l'absence de structure solide, la procédure redonne l'équation de dispersion de Kirchhoff-Langevin, qui décrit la propagation des ondes longitudinales dans les fluides viscothermiques. La nouvelle théorie et procédure d'homogénéisation nonlocale sont validées dans trois cas, portant sur des microgéométries significativement différentes. Dans le cas simple d'un tube circulaire rempli par un fluide viscothermique, on montre que les nombres d'ondes et les impédances prédits par la théorie nonlocale, coïncident avec ceux de la solution exacte de Kirchhoff, connue depuis longtemps. Au contraire, les résultats issus de la théorie locale (celle de Zwikker et Kosten, découlant de la théorie classique d'homogénéisation) ne donnent que le mode le plus attenué, et encore, seulement avec le petit désaccord existant entre la solution simplifiée de Zwikker et Kosten et celle exacte de Kirchhoff. Dans le cas où le milieu poreux est constitué d'un réseau carré de cylindres rigides parallèles, plongés dans le fluide, la propagation étant regardée dans une direction transverse, la vitesse de phase du mode le plus atténué peut être calculée en fonction de la fréquence en suivant les approches locale et nonlocale, résolues au moyen de simulations numériques par la méthode des Eléments Finis. Elle peut être calculée d'autre part par une méthode complètement différente et quasi-exacte, de diffusion multiple prenant en compte les effets viscothermiques. Ce dernier résultat quasi-exact montre un accord remarquable avec celui obtenu par la théorie nonlocale, sans restriction de longueur d'onde. Avec celui de la théorie locale, l'accord ne se produit que tant que la longueur d'onde reste assez grande.
|
Page generated in 0.0444 seconds