Spelling suggestions: "subject:"kirchhoff equation"" "subject:"kirchhoffs equation""
1 |
On the Kirchhoff equation in noncylindrical domains of RMedeiros, Luiz Adauto, Límaco, Juan 25 September 2017 (has links)
No description available.
|
2 |
Atratores para uma classe de equações de vigas extensíveis fracamente dissipativas / Attractors for a class of equations of extensible beams weakly dissipativeNarciso, Vando 06 May 2010 (has links)
Este trabalho contém resultados sobre a existência, unicidade e comportamento assintótico de soluções para uma equação de viga não linear do tipo Kirchhoff, \'u IND. tt\' \'+ \'DELTA\' POT. 2\' u - M(\'INT.IND. OMEGA\' | \'NABLA\' u| 2 dx) \'DELTA\' u+ f (\'u IND. t\' ) +g(u) = h em × R +, onde \'R POT. N\' é um domínio limitado com fronteira regular \\GAMA. Essa equação é um modelo matemático para pequenas vibrações transversais de vigas ou placas extensíveis. O termo não local M(\'INT.IND. OMEGA\' | \\NABLA u |2 dx) u está relacionado à variação de tensão na viga devida à sua extensibilidade. O termo f (\'u IND. t\' ) representa uma dissipação para o sistema e g(u) representa a força exercida pelo meio. A função h representa uma força externa adicional. Consideramos o problema com as condições de fronteira u|×R + = \'INT. u SUP. \'INT. v\' | \\\'GAMA\' ×\'R +\' = 0, que corresponde ao modelo de vigas fixadas pelo bordo \\\'GAMA\'. Discutiremos o caso em que a dissipação é linear e o caso em que é não linear. Mostraremos que em ambos os casos o sistema dinâmico associado ao problema possui um atrator global. Entretanto, para o caso em que a dissipação é linear, obtemos num espaço de fase mais regular, a existência de um conjunto inércia de dimensão finita, que atrai exponencialmente todos os limitados deste espaço / This work contains some results on the existence, uniqueness and asymptotic behavior of solutions for a nonlinear beam equation of Kirchhoff type, \'u IND. tt\' + \' DELTA POT. 2\' u+ M(\'INT. IND.\' |u| 2 dx) u + g(\'u IND. t\') + f (u) = h; where \'R POT. N\' is a bounded domain with smooth boundary . This equation is a model for small vibrations of extensible beams. The nonlocal term M(\' INT. IND.\' |u| 2 dx) u is related to the variation of tensions in the beam due to its extensibility. The term f (\'u IND. t\') represents a damping mechanism for the system and g(u) represents the force exerted by the foundation. The function h represents an additional external force. We consider the problem with boundary condition u|×R+ = \' u SUP. \' |×R+ = 0, which corresponds to the model of clamped beams. We discuss the cases where the dissipation is linear and the case nonlinear. We show that in both cases, the dynamical system associated to the problem has a global attractor. However, when the dissipation is linear, we obtain, in a more regular space, the existence of an inertial set of finite dimension, which attracts exponentially all bounded sets of this space
|
3 |
Atratores para uma classe de equações de vigas extensíveis fracamente dissipativas / Attractors for a class of equations of extensible beams weakly dissipativeVando Narciso 06 May 2010 (has links)
Este trabalho contém resultados sobre a existência, unicidade e comportamento assintótico de soluções para uma equação de viga não linear do tipo Kirchhoff, \'u IND. tt\' \'+ \'DELTA\' POT. 2\' u - M(\'INT.IND. OMEGA\' | \'NABLA\' u| 2 dx) \'DELTA\' u+ f (\'u IND. t\' ) +g(u) = h em × R +, onde \'R POT. N\' é um domínio limitado com fronteira regular \\GAMA. Essa equação é um modelo matemático para pequenas vibrações transversais de vigas ou placas extensíveis. O termo não local M(\'INT.IND. OMEGA\' | \\NABLA u |2 dx) u está relacionado à variação de tensão na viga devida à sua extensibilidade. O termo f (\'u IND. t\' ) representa uma dissipação para o sistema e g(u) representa a força exercida pelo meio. A função h representa uma força externa adicional. Consideramos o problema com as condições de fronteira u|×R + = \'INT. u SUP. \'INT. v\' | \\\'GAMA\' ×\'R +\' = 0, que corresponde ao modelo de vigas fixadas pelo bordo \\\'GAMA\'. Discutiremos o caso em que a dissipação é linear e o caso em que é não linear. Mostraremos que em ambos os casos o sistema dinâmico associado ao problema possui um atrator global. Entretanto, para o caso em que a dissipação é linear, obtemos num espaço de fase mais regular, a existência de um conjunto inércia de dimensão finita, que atrai exponencialmente todos os limitados deste espaço / This work contains some results on the existence, uniqueness and asymptotic behavior of solutions for a nonlinear beam equation of Kirchhoff type, \'u IND. tt\' + \' DELTA POT. 2\' u+ M(\'INT. IND.\' |u| 2 dx) u + g(\'u IND. t\') + f (u) = h; where \'R POT. N\' is a bounded domain with smooth boundary . This equation is a model for small vibrations of extensible beams. The nonlocal term M(\' INT. IND.\' |u| 2 dx) u is related to the variation of tensions in the beam due to its extensibility. The term f (\'u IND. t\') represents a damping mechanism for the system and g(u) represents the force exerted by the foundation. The function h represents an additional external force. We consider the problem with boundary condition u|×R+ = \' u SUP. \' |×R+ = 0, which corresponds to the model of clamped beams. We discuss the cases where the dissipation is linear and the case nonlinear. We show that in both cases, the dynamical system associated to the problem has a global attractor. However, when the dissipation is linear, we obtain, in a more regular space, the existence of an inertial set of finite dimension, which attracts exponentially all bounded sets of this space
|
4 |
Sur quelques problèmes elliptiques de type Kirchhoff et dynamique des fluides / On some elliptic problems ok Kirchhoff-type and fluid dynamicsBensedik, Ahmed 07 June 2012 (has links)
Cette thèse est composée de deux parties indépendantes. La première est consacrée à l'étude de quelques problèmes elliptiques de type de Kirchhoff de la forme suivante : -M(ʃΩNul² dx) Δu = f(x, u) xЄΩ ; u(x) = o xЄƋΩ où Ω cRN, N ≥ 2, f une fonction de Carathéodory et M une fonction strictement positive et continue sur R+. Dans le cas où la fonction f est asymptotiquement linéaire à l’infini par rapport à l'inconnue u, on montre, en combinant une technique de troncature et la méthode variationnelle, que le problème admet au moins une solution positive quand la fonction M est non décroissante. Et si f(x, u) = |u|p-1 u + λg(x), où p >0, λ un paramètre réel et g une fonction de classe C1 et changeant de signe sur Ω, alors sous certaines hypothèses sur M, il existe deux réels positifs λ. et λ. tels que le problème admet des solutions positives si 0 < λ <λ. et n'admet pas de solutions positives si λ > λ.. Dans la deuxième partie, on étudie deux problèmes soulevés en dynamique des fluides. Le premier est une généralisation d'un modèle décrivant la propagation unidirectionnelle dispersive des ondes longues dans un milieu à deux fluides. En écrivant le problème sous la forme d'une équation de point fixe, on montre l'existence d'au moins une solution positive. On montre ensuite sa symétrie et son unicité. Le deuxième problème consiste à prouver l'existence de la vitesse, la pression et la température d'un fluide non newtonien, incompressible et non isotherme, occupant un domaine borné, en prenant en compte un terme de convection. L’originalité dans ce travail est que la viscosité du fluide ne dépend pas seulement de la vitesse mais aussi de la température et du module du tenseur des taux de déformations. En se basant sur la notion des opérateurs pseudo-monotones, le théorème de De Rham et celui de point fixe de Schauder, l'existence du triplet, (vitesse, pression, température) est démontré / This thesis consists of two independent parts. The first is devoted to the study of some elliptic problems of Kirchhoff-type in the following form : -M(ʃΩNul² dx) Δu = f(x, u) xЄΩ ; u(x) = o xЄƋΩ where Ω cRN, N ≥ 2, f is a Caratheodory function and M is a strictly positive and continuous function on R+. In the case where the function f is asymptotically linear at infinity with respect to the unknown u, we show, by combining a truncation technique and the variational method, that the problem admits a positive solution when the function M is nondecreasing. And if f(x, u) = |u|p-1 u + λg(x) where p> 0, λ a real parameter and g is a function of class C1 and changes the sign in Ω, then under some assumptions on M, there exist two positive real λ. and λ. such that the problem admits positive solutions if 0 < λ <λ., and no positive solutions if λ > λ.. In the second part, we study two problems arising in fluid dynamics. The first is a generalization of a model describing the unidirectional propagation of long waves in dispersive medium with two fluids. By writing the problem as a fixed point equation, we prove the existence of at least one positive solution. We then show its symmetry and uniqueness. The second problem is to prove the existence of the velocity, pressure and temperature of a non-Newtonian, incompressible and isothermal fluid, occupying a bounded domain, taking into account a convection term. The originality in this work is that the fluid viscosity depends not only on the velocity but also on the temperature and the modulus of deformation rate tensor. Based on the notion of pseudo-monotone operators, the De Rham theorem and the Schauder fixed point theorem, the existence of the triplet, (velocity, pressure, temperature) is shown
|
5 |
Méthode du gradient topologique pour la détection de contours et de structures fines en imagerie / Topological gradient method applied to the detection of edges and fine structures in imagingDrogoul, Audric 08 October 2014 (has links)
Cette thèse porte sur la méthode du gradient topologique appliquée au traitement d'images. Principalement, on s'intéresse à la détection d'objets assimilés, soit à des contours si l'intensité de l'image à travers la structure comporte un saut, soit à une structure fine (filaments et points en 2D) s'il n'y a pas de saut à travers la structure. On commence par généraliser la méthode du gradient topologique déjà utilisée en détection de contours pour des images dégradées par du bruit gaussien, à des modèles non linéaires adaptés à des images contaminées par un processus poissonnien ou du bruit de speckle et par différents types de flous. On présente également un modèle de restauration par diffusion anisotrope utilisant le gradient topologique pour un domaine fissuré. Un autre modèle basé sur une EDP elliptique linéaire utilisant un opérateur anisotrope préservant les contours est proposé. Ensuite, on présente et étudie un modèle de détection de structures fines utilisant la méthode du gradient topologique. Ce modèle repose sur l'étude de la sensibilité topologique d'une fonction coût utilisant les dérivées secondes d'une régularisation de l'image solution d'une EDP d'ordre 4 de type Kirchhoff. En particulier on explicite les gradients topologiques pour des domaines 2D fissurés ou perforés, et des domaines 3D fissurés. Plusieurs applications pour des images 2D et 3D, floutées et contaminées par du bruit gaussien, montrent la robustesse et la rapidité de la méthode. Enfin on généralise notre approche pour la détection de contours et de structures fines par l'étude de la sensibilité topologique d'une fonction coût utilisant les dérivées m−ième d'une régularisation de l'image dégradée, solution d'une EDP d'ordre 2m. / This thesis deals with the topological gradient method applied in imaging. Particularly, we are interested in object detection. Objects can be assimilated either to edges if the intensity across the structure has a jump, or to fine structures (filaments and points in 2D) if there is no jump of intensity across the structure. We generalize the topological gradient method already used in edge detection for images contaminated by Gaussian noise, to quasi-linear models adapted to Poissonian or speckled images possibly blurred. As a by-product, a restoration model based on an anisotropic diffusion using the topological gradient is presented. We also present a model based on an elliptical linear PDE using an anisotropic differential operator preserving edges. After that, we study a variational model based on the topological gradient to detect fine structures. It consists in the study of the topological sensitivity of a cost function involving second order derivatives of a regularized version of the image solution of a PDE of Kirchhoff type. We compute the topological gradients associated to perforated and cracked 2D domains and to cracked 3D domains. Many applications performed on 2D and 3D blurred and Gaussian noisy images, show the robustness and the fastness of the method. An anisotropic restoration model preserving filaments in 2D is also given. Finally, we generalize our approach by the study of the topological sensitivity of a cost function involving the m − th derivatives of a regularization of the image solution of a 2m order PDE.
|
6 |
Theorie macroscopique de propagation du son dans les milieux poreux 'à structure rigide permettant la dispersion spatiale: principe et validationNemati, Navid 11 December 2012 (has links) (PDF)
Ce travail présente et valide une théorie nonlocale nouvelle et généralisée, de la propagation acoustique dans les milieux poreux à structure rigide, saturés par un fluide viscothermique. Cette théorie linéaire permet de dépasser les limites de la théorie classique basée sur la théorie de l'homogénéisation. Elle prend en compte non seulement les phénomènes de dispersion temporelle, mais aussi ceux de dispersion spatiale. Dans le cadre de la nouvelle approche, une nouvelle procédure d'homogénéisation est proposée, qui permet de trouver les propriétés acoustiques à l'échelle macroscopique, en résolvant deux problèmes d'action-réponse indépendants, posés à l'échelle microscopique de Navier-Stokes-Fourier. Contrairement à la méthode classique d'homogénéisation, aucune contrainte de séparation d'échelle n'est introduite. En l'absence de structure solide, la procédure redonne l'équation de dispersion de Kirchhoff-Langevin, qui décrit la propagation des ondes longitudinales dans les fluides viscothermiques. La nouvelle théorie et procédure d'homogénéisation nonlocale sont validées dans trois cas, portant sur des microgéométries significativement différentes. Dans le cas simple d'un tube circulaire rempli par un fluide viscothermique, on montre que les nombres d'ondes et les impédances prédits par la théorie nonlocale, coïncident avec ceux de la solution exacte de Kirchhoff, connue depuis longtemps. Au contraire, les résultats issus de la théorie locale (celle de Zwikker et Kosten, découlant de la théorie classique d'homogénéisation) ne donnent que le mode le plus attenué, et encore, seulement avec le petit désaccord existant entre la solution simplifiée de Zwikker et Kosten et celle exacte de Kirchhoff. Dans le cas où le milieu poreux est constitué d'un réseau carré de cylindres rigides parallèles, plongés dans le fluide, la propagation étant regardée dans une direction transverse, la vitesse de phase du mode le plus atténué peut être calculée en fonction de la fréquence en suivant les approches locale et nonlocale, résolues au moyen de simulations numériques par la méthode des Eléments Finis. Elle peut être calculée d'autre part par une méthode complètement différente et quasi-exacte, de diffusion multiple prenant en compte les effets viscothermiques. Ce dernier résultat quasi-exact montre un accord remarquable avec celui obtenu par la théorie nonlocale, sans restriction de longueur d'onde. Avec celui de la théorie locale, l'accord ne se produit que tant que la longueur d'onde reste assez grande.
|
Page generated in 0.0704 seconds