Return to search

Uma aproximação do tipo Euler-Maruyama para o processo de Cox-Ingersoll-Ross

Made available in DSpace on 2016-06-02T20:06:10Z (GMT). No. of bitstreams: 1
6520.pdf: 1838901 bytes, checksum: 35b2a71ea573764ae46492a67c0ef3d6 (MD5)
Previous issue date: 2015-02-26 / Universidade Federal de Sao Carlos / In this master's thesis we work with Cox-Ingersoll-Ross (CIR) process. This process was originally proposed by John C. Cox, Jonathan E. Ingersoll Jr. and Stephen A. Ross in 1985. Nowadays, this process is widely used in financial modeling, e.g. as a model for short-time interest rates or as volatility process in the Heston model. The stochastic diferential equation (SDE) which defines this model does not have closed form solution, so we need to approximate the process by some numerical method. In the literature, several numerical approximations has been proposed based in interval discretization. We approximate the CIR process by Euler-Maruyama-type method based in random discretization proposed by Leão e Ohashi (2013) under Feller condition. In this context, we obtain an exponential convergence order for this approximation and we use Monte Carlo techniques to compare the numerical results with theoretical values. / Nesta dissertação de mestrado nós trabalhamos com o processo de Cox-Ingersoll- Ross, que foi originalmente proposto por John C. Cox, Jonathan E. Ingersoll Jr. e Stephen A. Ross em 1985. Este processo é amplamente utilizado em modelagem financeira, por exemplo, para descrever a evolução de taxas de juros ou como o processo de volatilidade no modelo de Heston. A equação diferencial estocástica que define este processo não possui solução fechada, logo faz-se necessária a aproximação do processo via algum método numérico. Na literatura diversos trabalhos propõem aproximações baseadas em esquemas de discretização intervalar. Nós aproximamos o processo de Cox-Ingersoll-Ross através de um método numérico do tipo Euler- Maruyama baseado na discretização aleatória proposta por Leão e Ohashi (2013) sob a condição de Feller. Neste contexto, mostramos que esta aproximação possui uma ordem de convergência exponencial e utilizamos técnicas de simulação Monte Carlo para comparar resultados numéricos com valores teóricos.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/4588
Date26 February 2015
CreatorsFerreira, Ricardo Felipe
ContributorsPinto Júnior, Dorival Leão
PublisherUniversidade Federal de São Carlos, Programa de Pós-graduação em Estatística, UFSCar, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds