El presente trabajo propone el desarrollo de modelos machine learning para la estimación de la
probabilidad de default, que ayuden a reducir los niveles de deterioro de las carteras de créditos
de consumo de las instituciones financieras de Perú, las cuales basan sus políticas de créditos
en los modelos econométricos tradicionales como la regresión logística. Las variables que mejor
explican la probabilidad de default están relacionadas a la evolución de niveles de endeudamiento
y la historia de comportamiento de pago en el sistema financiero. Los modelos Random Forest
(Bagging) y XGBoost (Boosting) presentan mejores niveles de discriminación y predictibilidad que
el modelo tradicional, asimismo, se demuestra que estos modelos machine learning se
complementan muy bien con el modelo tradicional dado que permiten identificar conjuntos de
intercambio de deudores con menor riesgo por deudores de mayor riesgo calificados por el
modelo tradicional. Adicionalmente, estos modelos machine learning permiten una vista
complementaria al momento de identificar los perfiles con mayor riesgo ya que
metodológicamente no se basan en la identificación de patrones promedio como la regresión
logística tradicional.
Identifer | oai:union.ndltd.org:PUCP/oai:tesis.pucp.edu.pe:20.500.12404/21260 |
Date | 11 January 2022 |
Creators | Bravo Castro, Gerson Enrique |
Contributors | Paiva Ramos, Walter Junior |
Publisher | Pontificia Universidad Católica del Perú, PE |
Source Sets | Pontificia Universidad Católica del Perú |
Language | Spanish |
Detected Language | Spanish |
Type | info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/closedAccess |
Page generated in 0.0023 seconds