Return to search

Fatigue crack initiation in cross-ply carbon fiber laminates

The goal of this research was to investigate the tensile fatigue behavior of a carbon fiber / epoxy composite material. Specifically, the stress levels at which cracks initiated in static and fatigue loading in the 90 degree plies of a "quasi-cross ply layup" [0/905]S was investigated. For layups which contain them, cracks in composite laminates initiate and propagate from 90 degree plies (including the ubiquitous "quasi-isotropic layup" 0/±45/90). Thus, this work provides valuable insight into the fatigue behavior of the plies which originate fatigue damage. Unidirectional off-axis 90 degree and 10 degree specimens were also tested, but the bulk of testing was done on the cross-ply laminates. The project sponsors, Boeing, were in the process of extending a failure model to the case of fatigue. The body of work presented here provided empirical data for that effort.

Several different inspection techniques were used to investigate for cracking in the 90 degree plies, including: x-ray images, edge replicates, dye penetrants, and optical microscopy. Plots of the stress level at which crack initiation occurred will be presented, as well as images illustrating damage development in these layups. Comparisons are made to the experimental results of other investigations of this type of layup. Explorations of the effect of R-ratio (including R = 0.1 and 0.5), loading frequency (including 3, 10, and 30 Hz), and surface roughness (hand polished specimen edges to 1500 grit smoothness) on fatigue crack initiation were also performed. For the most damaging case (10 Hz, R = 0.1, no polishing), the crack initiation strain (0.00276) was one half of the strain at which cracks initiated in static monotonic loading (0.0054), and was 16% of the cross-ply specimen's (0 degree fiber dominated) ultimate strain value of (0.018).

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/29697
Date09 July 2009
CreatorsKetterer, Justin M.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeThesis

Page generated in 0.0018 seconds