Spelling suggestions: "subject:"track initiation"" "subject:"crack initiation""
1 |
Micromechanisms of fracture under mixed mode I and II loadingBhattacharjee, Debashish January 1994 (has links)
No description available.
|
2 |
Thermo-mechanical fatigue of polycrystalline, directionally solidified and single crystal nickel base superalloys repaired by laser beam weldingDurocher, Jonathan 04 April 2013 (has links)
The low cycle thermo-mechanical fatigue of laser beam welded conventionally cast Inconel 738, directionally solidified René 80 and single crystal René N5 has been evaluated. Results have been compared to gas tungsten arc and baseline alloy conditions. Metallographic examination of laser beam welds and the associated heat affected zone were conducted by scanning electron microscopy and energy dispersive spectroscopy. The impact of laser beam welding on thermo-mechanical fatigue properties of Inconel 738, René 80 and René N5 has been evaluated and recommendations for improvements and areas of further research have been presented.
|
3 |
Effective parameters on crack initiation stress in low porosity rocksNicksiar, Mohsen Unknown Date
No description available.
|
4 |
Thermo-mechanical fatigue of polycrystalline, directionally solidified and single crystal nickel base superalloys repaired by laser beam weldingDurocher, Jonathan 04 April 2013 (has links)
The low cycle thermo-mechanical fatigue of laser beam welded conventionally cast Inconel 738, directionally solidified René 80 and single crystal René N5 has been evaluated. Results have been compared to gas tungsten arc and baseline alloy conditions. Metallographic examination of laser beam welds and the associated heat affected zone were conducted by scanning electron microscopy and energy dispersive spectroscopy. The impact of laser beam welding on thermo-mechanical fatigue properties of Inconel 738, René 80 and René N5 has been evaluated and recommendations for improvements and areas of further research have been presented.
|
5 |
Effects of specimen geometry and coating on the thermo-mechanical fatigue of PWA 1484 superalloyO'Rourke, Matthew Daniel 27 August 2014 (has links)
The single crystal superalloy PWA 1484 is used in hot section turbine blade applications due to its performance at high temperatures. In practice, the turbine blades are often coated in order to protect them from environmental degradation. However, under repeated cyclic loading, the coating may serve as a site for crack initiation in the blades. Fundamental out-of-phase (OP) thermo-mechanical fatigue (TMF) studies, primarily using uncoated solid cylindrical test samples, have previously examined both crack initiation and propagation in PWA 1484. In this work, mechanical strain-controlled OP TMF tests were performed on coated and uncoated specimens of a hollow cylindrical geometry in order to study the effects of both geometry and coating on the TMF crack initiation behavior. To accomplish this, it was necessary to create and analyze a modified gripping mechanism due to the unique geometry of the test samples, and as predicted by hand calculations and finite element analysis, these modifications proved to be successful. The TMF test results for the uncoated material were compared to those from previous studies under the same testing conditions, and it was found that the differences in geometry had a minimal impact on fatigue life. Comparisons of the results for the coated and uncoated material suggested that the coating may have offered a slight improvement in life, although insufficient results were available to determine whether these differences were statistically significant. Damage mechanisms resulting from different test conditions were also observed through microscopy on failed specimens.
|
6 |
Effect of Corrosive Environment on Fatigue Behavior of Nickel - Based AlloysMohamed, Aezeden 19 January 2011 (has links)
Nickel based alloys have been developed as a material offering superior general and localized corrosion resistance compared to the more traditionally used in chemical and oil plant in the most aggressive environment such as hydrochloric acid and ferric chloride. Hence the addition of Cr and Mo to Ni creates alloys with exceptional corrosion resistance in a diverse range of environments. This study examines the roles of Cr and Mo in the corrosion behavior of Ni alloys. The performance of three nickel-base alloys IN600, IN601 and C22 was examined in increasing saline solution severity of sodium chloride, concentrated hydrochloric acid and ferric chloride solution at pH = 0.0. The passive corrosion and breakdown behavior of these alloys suggests that Cr is the primary element influencing general corrosion resistance, while the repassivation potential is strongly dependent on the Mo content. This indicates that Cr plays a strong role in maintaining the passivity of the alloy, while Mo acts to stabilize the passive film after a localized breakdown event.
Corrosion fatigue test results indicate that fatigue life of IN600, IN601 and C22 specimens tested in 3.5 % sodium chloride solution are essentially the same as for specimens tested in air. Test results also showed that for IN600, IN601 and C22 alloys, the number of cycles to failure was highest in air and sodium chloride solution, followed by specimens fatigued in hydrochloric acid, and was least in specimens fatigued in ferric chloride solution. No evidence of surface pitting was found on C22 specimens in all three solutions whereas IN600 and IN601 were both pitted. However, pits were generally larger in IN600 likely due to lower Cr content than in IN601.
|
7 |
Effect of Corrosive Environment on Fatigue Behavior of Nickel - Based AlloysMohamed, Aezeden 19 January 2011 (has links)
Nickel based alloys have been developed as a material offering superior general and localized corrosion resistance compared to the more traditionally used in chemical and oil plant in the most aggressive environment such as hydrochloric acid and ferric chloride. Hence the addition of Cr and Mo to Ni creates alloys with exceptional corrosion resistance in a diverse range of environments. This study examines the roles of Cr and Mo in the corrosion behavior of Ni alloys. The performance of three nickel-base alloys IN600, IN601 and C22 was examined in increasing saline solution severity of sodium chloride, concentrated hydrochloric acid and ferric chloride solution at pH = 0.0. The passive corrosion and breakdown behavior of these alloys suggests that Cr is the primary element influencing general corrosion resistance, while the repassivation potential is strongly dependent on the Mo content. This indicates that Cr plays a strong role in maintaining the passivity of the alloy, while Mo acts to stabilize the passive film after a localized breakdown event.
Corrosion fatigue test results indicate that fatigue life of IN600, IN601 and C22 specimens tested in 3.5 % sodium chloride solution are essentially the same as for specimens tested in air. Test results also showed that for IN600, IN601 and C22 alloys, the number of cycles to failure was highest in air and sodium chloride solution, followed by specimens fatigued in hydrochloric acid, and was least in specimens fatigued in ferric chloride solution. No evidence of surface pitting was found on C22 specimens in all three solutions whereas IN600 and IN601 were both pitted. However, pits were generally larger in IN600 likely due to lower Cr content than in IN601.
|
8 |
Effect of Microstructure on the Fatigue Behavior of Type 304L Stainless Steel including Mean Strain and Cyclic Rate EffectsPegues, Jonathan W 09 December 2016 (has links)
In this study, the effects of stress and strain rate on cyclic deformation, secondary hardening, martensitic phase transformation, crack initiation, and fatigue behavior of type 304L stainless steel are examined. A series of load and strain controlled uniaxial zero and non-zero mean strain fatigue tests were conducted with varying frequencies in order to investigate the effect of loading rate on fatigue behavior. The volume fraction of martensite was quantified for several tests using x-ray diffraction and electron backscatter diffraction. The loading rates were found to have a direct effect on the microstructure and fatigue behavior of the alloy investigated. Adiabatic heating from an increased rate of loading was found to effect martensite formation which is a major contributor to the secondary hardening phenomena associated with many austenitic stainless steels under cyclic loading. Also affected by the microstructural changes were cyclic deformation, crack initiation, microstructurally small crack growth, and fatigue behavior.
|
9 |
Stress Analysis of Different Shaped Holes on a Packaging MaterialParimi, Venkata Naga Sai Krishna Janardhan, Eluri, Vamsi January 2016 (has links)
In packaging industries, the demand for usage of Low Density Poly Ethylene foil is of profound interest. In the past, research was carried out on finite and infinite plates with varying crack lengths but having constant crack width. In this thesis, a detailed analysis on crack initiation is carried out on finite plates by varying width of the hole. The hole shapes for stress analysis include circle, ellipse and rectangular notch. Initially, maximum stress is found out using Linear Elastic Fracture Mechanics (LEFM) theory and compared with Finite element method (FEM) results. Secondly using Elastic Plastic Fracture Mechanics theory (EPFM), critical stress and geometric function are evaluated theoretically by Modified Strip Yield Model (MSYM) and numerically by ABAQUS. Finally, a tensile test is conducted to validate the theoretical and numerical results. By varying the width of the hole, a study on the parameters like critical stress, geometric function is presented. A conclusion is drawn that the effect of hole width should be considered when calculating fracture parameters.
|
10 |
Amorçage de fissures et gradient de contrainte en fretting et en fatigueAmargier, Rémi 07 July 2011 (has links)
Cette étude traite de la prise en compte du gradient de contrainte et du frottement pour calculer l’amorçage de fissures en fatigue. On s’intéresse notamment au dimensionnement d’une manille en Inconel 718 munie de bagues en Inconel 718montées avec interférence. Pour cela, on réalise des essais de fretting et de fatigue pour étudier les conditions d’amorçage de fissures en présence de gradient de contrainte et de frottement. Les résultats expérimentaux mettent en évidence l’effet du gradient des contraintes sur l’amorçage de fissures et justifient la prise en compte du gradient pour le dimensionnement en fatigue des structures. A travers ces essais balayant une gamme de gradient de contrainte étendue, on confirme que la présence d’un gradient de contrainte retarde l’amorçage de fissures. Les avantages et les inconvénients de plusieurs approches de fatigue multiaxiale intégrant le gradient de contrainte sont étudiés. De cette analyse, une proposition est faite permettant de décrire au mieux les résultats expérimentaux de fatigue et de fretting. Cette approche s’appuie sur l’utilisation d’une fonction de poids dépendant du gradient de la pression hydrostatique. Cette approche est similaire à des approches mises en oeuvre sur d’autres problématiques de fatigue ce qui permet de dégager quelques points de convergence pour traiter le problème du gradient de contrainte en fatigue. Un essai de fatigue sur une manille munie d’une bague montée avec interférence est réalisé. L’effet du gradient de contrainte sur l’amorçage de fissures dans ce système est trop faible pour que l’utilisation d’une approche intégrant l’effet de gradient soit pertinente. Cette observation est cohérente avec les résultats expérimentaux précédents obtenus dans cette étude. L’inconel 718 apparaît donc comme un matériau peu sensible à l’effet de gradient de contrainte. Une approche de fatigue multiaxiale de type Crossland permet une description raisonnable de la durée de vie du système. Une analyse numérique montre que la tenue en fatigue du système est peu sensible au coefficient de frottement alors que l’interférence a un impact beaucoup plus important. / This study focuses on the stress gradient effect and the friction to estimate the crack initiation condition in fatigue. The industrial application is a lug in Inconel 718 with shrink fitted rings also in Inconel 718.Fretting tests and fatigue tests are performed to measure crack initiation conditions with friction and stress gradient. The experimental results confirm the beneficial effect of the stress gradients on the fatigue crack initiation. These results justify the consideration of stress gradients to design structures against fatigue. Through these experiments which sweep over a large range of stress gradients, it is confirmed that stress gradient delays the crack initiation. The benefits and the drawbacks of several multiaxial fatigue approaches dealing with stress gradients are studied. Then, a proposal is done to describe accurately the experimental results of fatigue and of fretting. The proposal is based on a weight function and on the use of the gradient of hydrostatic pressure. This approach is very similar to some approaches already applied to other fatigue issues. This enables to highlight some similarities to deal with the effect of stress gradient in fatigue. Fatigue tests are finally performed on a lug with shrink fitted rings. The stress gradient effect on this application is too low to make relevant the use of a fatigue approach dealing with stress gradient. These experimental results are consistent with the previous results of fatigue and fretting. Therefore, the Inconel 718 appears as a low sensitive material to stress gradient. A multiaxial fatigue approach such the Crossland criterion enables to describe correctly the fatigue strength of this system. The numerical analysis shows that the fatigue strength of the system is not very sensitive to the coefficient of friction whereas the interference impacts significantly on the fatigue strength of the system.
|
Page generated in 0.1106 seconds