Based on their highly bioactive properties in membrane phospholipids, there is growing recognition that dietary n-3 polyunsaturated fatty acids (PUFA) may be of significant benefit in the prevention and treatment of many lifestyle related pathologies, however direct evidence is lacking. The fat-1 transgenic mouse, a genetic model of n-3 PUFA enrichment, is a useful tool in nutritional research which has provided enhanced insight into the health effects of lifelong n-3 PUFA exposure. However, the influence of timing of n-3 PUFA exposure on health related outcomes remains unclear. This thesis describes the functional characterization of the novel Cre recombinase dependent inducible fat-1 (iFat-1) transgene. In the presence of Cre, the iFat-1 transgene was found to reduce phospholipid n-6/n-3 PUFA ratios both in vitro (100%) and in vivo (upwards of 70%), suggesting that the iFat-1 transgene has potential application to address temporal effects of n-3 PUFA in health and disease. / Canadian Institutes of Health Research - Frederick Banting and Charles Best Canada Graduate Scholarship, Sun Life Financial
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OGU.10214/5334 |
Date | 18 January 2013 |
Creators | Clarke, Shannon |
Contributors | Ma, David |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0023 seconds