Return to search

Élucidation structurale des facteurs de transcription végétaux à domaines MADS / Structural elucidation of plant MADS domain transcription factors

Virtuellement tous les habitats terrestres sont dominés par les angiospermes, ou plantes à fleurs. Leur capacité à coloniser de nouveaux habitats et supplanter une autre espèce est due à l'avènement d'une nouvelle structure reproductrice – la fleur. La fleur uni les organes mâles et femelles dans une structure compacte et contient la graine. Les plantes à fleurs ne sont pas seulement le type dominant des plantes terrestres, mais sont également la principale source de nourriture et l'habitat de tous les animaux, y compris les humains. En termes d'évolution, les fleurs sont considérées comme un développement récent. Elles ont fait l'objet de spéculations depuis l'époque de Charles Darwin qui à nommé l’évolution dominante et la diversification des plantes à fleurs comme «un abominable mystère» en raison de l'absence d'une transition en douceur de la non-floraison vers la floraison des plantes dans le registre fossile. Avec le séquençage de plusieurs génomes de gymnospermes (semences de plantes non-florales), d’angiospermes basals et de plantes à fleurs supérieures, certaines familles de gènes jouant un rôle central dans le développement et l'évolution de la fleur ont été identifiées. Notre recherche se concentre sur une de ces familles de régulateurs de niveau supérieur appelée « famille de facteur de transcription MADS » (TF). Cette famille de TF permet d'orchestrer le développement des fleurs. Nous nous sommes intéressés à la compréhension des mécanismes moléculaires de la famille des MADS et à la façon dont ces protéines sont capables de contrôler les fonctions de reproduction complexes.Ce projet intègre différentes techniques biophysiques comme la cristallographie aux rayons X, la diffusion des rayons X aux petits angles (SAXS) et la microscopie à force atomique (AFM) afin d’étudier les interactions protéine-protéine et protéine-ADN des FT MADS. Aucune étude n’a, à ce jour, porté sur les mécanismes moléculaires des FT MADS en utilisant cette approche structurale intégrée.Un obstacle important dans l'étude des FT MADS a été l’expression des protéines recombinantes et leur purification. Dans ce projet, les protocoles de purification de plusieurs recombinants FT MADS entières ont été établis, permettant la caractérisation structurale et biochimique des protéines dans leurs intégralités. La structure aux rayons X du domaine d'oligomérisation de la protéine de la famille MADS, SEPALLATA3 (SEP3) est présenté et utilisé comme modèle pour comprendre les motifs d'oligomérisation de la famille élargie et les bases moléculaires des interactions protéine-protéine. Des solutions de structures9provenant d'études SAXS de AGAMOUS (AG) et de la phase végétative courte (SVP) sont présentées et complétés par la caractérisation biochimique de leur état d'oligomérisation.Afin d'étudier les interactions protéine-ADN, des procédés complémentaires ont été utilisés. Une propriété importante des FT MADS est leur capacité à modifier la structure de l'ADN grâce à la formation de boucles d'ADN. De manière hypothétique, les FT MADS oligomérisent et fixent l'ADN sur deux sites différents, bouclant potentiellement l'ADN. En utilisant l'AFM, la première preuve directe de la formation de boucle d'ADN par SEP3 est obtenue. Les caractéristiques de liaison d'ADN de SVP ont été étudiées par analyse de décalage de mobilité électrophorétique (EMSA), par thermophorèseà échelle microscopique (MST) et par AFM. Contrairement au cas de SEP3, l’EMSA et l’AFM ont montrés que SVP est un dimère et présente différents modes de liaison à l'ADN.Ces données fournissent une base atomique et structurale de la fonction des FT MADS. Sur la base de ce travail, nous commençons à comprendre l’oligomérisation et certaines spécificités déterminantes de liaison à l'ADN. Ces études montrent comment les FT MADS s’oligomérisent. / Virtually all terrestrial habitats are dominated by angiosperms, or flowering plants. Their success in colonizing new habitats and supplanting other species is due to the advent of a complex reproductive structure – the flower. The flower unites the male and female organs into one compact structure and encloses the seed. Flowering plants are not only the dominant type of land plants, but also are the primary source of food and habitat for all animals, including humans. In evolutionary terms, flowers are considered a recent development and have been a subject of speculation from the time of Charles Darwin who termed the dominant rise and diversification of flowering plants as “an abominable mystery”* due to the lack of a smooth transition from non-flowering to flowering plants in the fossil record. With the sequencing of multiple genomes from gymnosperms (non-flowering seed plants), basal angiosperms and higher flowering plants, certain gene families have been identified which play a central role in the development and evolution of the flower. My research focuses on one such family of high-level regulators, the MADS transcription factor (TF) family. This TF family helps to orchestrate flower development among other functions. As such, there is great interest in understanding the molecular mechanisms of the MADS family and how these proteins are able to control complex reproductive pathways.This project integrates different biophysical techniques including x-ray crystallography, small angle x-ray scattering (SAXS) and atomic force microscopy (AFM) to investigate protein-protein and protein-DNA interactions of MADS TFs. No studies to date have investigated the molecular mechanisms of MADS TFs using this integrated structural approach.One important hurdle in the study of the MADS TFs has been recombinant protein expression and purification. In this project, recombinant purification protocols for several full length MADS TFs were established, allowing the structural and biochemical characterisation of the proteins. The crystal structure of the oligomerisation domain of the MADS family protein SEPALLATA3 (SEP3) is presented and used as a template for understanding the oligomerisation patterns of the larger family and the molecular basis for protein-protein interactions. Investigation of solution structures, derived from SAXS studies, of AGAMOUS (AG) and SHORT VEGETATIVE PHASE (SVP) along with biochemical characterisation of their oligomerisation states are also presented.In order to study protein-DNA interactions, complementary methods were used. An important putative property of the MADS TFs is their ability to change the structure of DNA through the formation of DNA loops. MADS TFs are hypothesized to oligomerise and bind DNA at two different sites, potentiating looping of DNA. Using AFM, the first direct evidence of DNA looping by SEP3 is described. The DNA binding characteristics of SVP were studied using electrophoretic mobility shift assay (EMSA), microscale thermophoresis (MST) and AFM. Unlike SEP3, SVP is dimeric and thus exhibits different DNA-binding patterns.The data presented here provide an atomic and structural basis for MADS TF function. Based on this work, we now are beginning to understand some of the oligomerisation and DNA-binding specificity determinants. These studies demonstrate how the MADS TFs oligomerise and the results show that we can disrupt oligomerisation and potentially DNA-binding very specifically through the introduction of point mutations. Future work will investigate the in vivo consequences of altered oligomerisation and how this affects different developmental programs in plant reproduction and floral organ morphogenesis.*Letter from Charles Darwin to Joseph Dalton Hooker, written 22 July 1879 (Source: Cambridge University Library DAR 95: 485 – 488) (Friedman, 2009b).

Identiferoai:union.ndltd.org:theses.fr/2016GREAV083
Date30 May 2016
CreatorsPuranik, Sriharsha
ContributorsGrenoble Alpes, Zubieta, Chloé, Gordon, Léonard
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0029 seconds