Cross-Laminated Timber (CLT) has recently become a popular construction material for building timber structures. One advantage of CLT is, that it can be used as floor, beam and wall element. As the arrangements of layers in CLT is in perpendicular direction to each other, it exhibits remarkable strength properties in both in-plane directions. However, the low stiffness and strength properties in compression perpendicular to the grain hinder application of CLT in high rising building, since forces are usually transferred from the wall elements through floor elements perpendicular to the grain. Thus, the aim of this thesis is to get a thorough understanding of the mechanical properties of such connections for different setups, including wood-wood connections, connections with acoustic layers and connections with screws. In addition, the wall was place at different positions on the CLT-floor element. Mechanical tests and numerical simulations, by means of finite element modelling (FEM) were carried out. CLT floor elements, consisting of 5-layers, were loaded by 3-layered CLT wall elements. Displacement and deformation were continuously measured by Potentiometers/LVDTs and an optical measurement system, respectively. Based on the experimental results compressive strength, slip curve and stiffness of the CLT connections were evaluated. Subsequently, results from FE-modelling were compared with experimental findings, which show a good agreement in elastic stiffness. Experimental results exhibited a pronounced influence of the wall position and connection setup on strength and stiffness. Central position of the wall showed higher mechanical properties than edge position. Highest strength and stiffness were found for screwed connections, where the wood-wood connections showed similar results. Connections with acoustic layers exhibited the lowest mechanical properties.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-77339 |
Date | January 2018 |
Creators | Huang, Qibin, Joy, Anitha |
Publisher | Linnéuniversitetet, Institutionen för byggteknik (BY) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds