Named Entity Recognition (NER) is a critical task in Natural Language Processing (NLP), and recent advancements in language model pre-training have significantly improved its performance. However, this improvement is not universally applicable due to a lack of large pre-training datasets or computational budget for smaller languages. This study explores the viability of fine-tuning an English and a multilingual model on a Swedish NER task, compared to a model trained solely on Swedish. Our methods involved training these models and measuring their performance using the F1-score metric. Despite fine-tuning, the Swedish model outperformed both the English and multilingual models by 3.0 and 9.0 percentage points, respectively. The performance gap between the English and Swedish models during fine-tuning decreased from 19.8 to 9.0 percentage points. This suggests that while the Swedish model achieved the best performance, fine-tuning can substantially enhance the performance of English and multilingual models for Swedish NER tasks. / Inom området för Natural Language Processing (NLP) är identifiering av namngivna entiteter (NER) en viktig problemtyp. Tack vare senaste tidens framsteg inom förtränade språkmodeller har modellernas prestanda på problemtypen ökat kraftigt. Denna förbättring kan dock inte tillämpas överallt på grund av en brist på omfattande dataset för förträning eller tillräcklig datorkraft för mindre språk. I denna studie undersöks potentialen av fine-tuning på både en engelsk, en svensk och en flerspråkig modell för en svensk NER-uppgift. Dessa modeller tränades och deras effektivitet bedömdes genom att använda F1-score som mått på prestanda. Även med fine-tuning var den svenska modellen bättre än både den engelska och flerspråkiga modellen, med en skillnad på 3,0 respektive 9,0 procentenheter i F1-score. Skillnaden i prestandan mellan den engelska och svenska modellen minskade från 19,8 till 9,0 procentenheter efter fine-tuning. Detta indikerar att även om den svenska modellen var mest framgångsrik, kan fine-tuning av engelska och flerspråkiga modeller betydligt förbättra prestandan för svenska NER-uppgifter.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-330863 |
Date | January 2023 |
Creators | Lai Wikström, Daniel, Sparr, Axel |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2023:317 |
Page generated in 0.0028 seconds